[1]

Singularly perturbative behaviour of nonlinear advection–diffusionreaction processes
The European Physical Journal Plus,
2024
DOI:10.1140/epjp/s1336002404894w



[2]

Scalar Perturbations of Gravitational Collapse under Homotopy Perturbation Method: A Critical Study on the Rectangular and Price Potential
Fortschritte der Physik,
2024
DOI:10.1002/prop.202300029



[3]

An accurate and efficient numerical solution for the generalized Burgers–Huxley equation via Taylor wavelets method: Qualitative analyses and Applications
Mathematics and Computers in Simulation,
2023
DOI:10.1016/j.matcom.2023.02.019



[4]

TwoDimensional Uniform and NonUniform Haar Wavelet Collocation Approach for a Class of Nonlinear PDEs
Computation,
2023
DOI:10.3390/computation11100189



[5]

1D Generalised BurgersHuxley: Proposed Solutions Revisited and Numerical Solution Using FTCS and NSFD Methods
Frontiers in Applied Mathematics and Statistics,
2022
DOI:10.3389/fams.2021.773733



[6]

Error analysis and numerical solution of Burgers–Huxley equation using 3scale Haar wavelets
Engineering with Computers,
2022
DOI:10.1007/s00366020010374



[7]

Advanced Analytic SelfSimilar Solutions of Regular and Irregular Diffusion Equations
Mathematics,
2022
DOI:10.3390/math10183281



[8]

Trends in Data Engineering Methods for Intelligent Systems
Lecture Notes on Data Engineering and Communications Technologies,
2021
DOI:10.1007/9783030793579_30



[9]

Analytic Solutions of Fractal and Fractional Time DerivativeBurgers–Nagumo Equation
International Journal of Applied and Computational Mathematics,
2021
DOI:10.1007/s40819021011459



[10]

Fibonacci polynomials for the numerical solution of variable‐order space‐time fractional Burgers‐Huxley equation
Mathematical Methods in the Applied Sciences,
2021
DOI:10.1002/mma.7222



[11]

Differential Geometry, Differential Equations, and Mathematical Physics
Tutorials, Schools, and Workshops in the Mathematical Sciences,
2021
DOI:10.1007/9783030632533_4



[12]

Fibonacci polynomials for the numerical solution of variable‐order space‐time fractional Burgers‐Huxley equation
Mathematical Methods in the Applied Sciences,
2021
DOI:10.1002/mma.7222



[13]

Invariant Subspace Classification and Exact Explicit Solutions to a Class of Nonlinear Wave Equation
Qualitative Theory of Dynamical Systems,
2020
DOI:10.1007/s12346020004006



[14]

An algorithm for solving the Burgers–Huxley equation using the Elzaki transform
SN Applied Sciences,
2020
DOI:10.1007/s4245201916533



[15]

Symmetry Reductions, Dynamical Behavior and Exact Explicit Solutions to a Class of Nonlinear Shallow Water Wave Equation
Qualitative Theory of Dynamical Systems,
2020
DOI:10.1007/s12346020003807



[16]

Exact solutions of the Burgers–Huxley equation via dynamics
Journal of Geometry and Physics,
2020
DOI:10.1016/j.geomphys.2020.103615



[17]

Traveling wave solutions and stability behaviours under advection dominance for singularly perturbed advectiondiffusionreaction processes
Chaos, Solitons & Fractals,
2020
DOI:10.1016/j.chaos.2020.109881



[18]

Dynamical analysis on traveling wave of a reaction–diffusion model
Applied Mathematics Letters,
2020
DOI:10.1016/j.aml.2020.106550



[19]

Analytic radiation model for perfect fluid under homotopy perturbation method
Indian Journal of Physics,
2020
DOI:10.1007/s12648020018045



[20]

Kinky periodic pulse and interaction of bell wave with kink pulse wave propagation in nerve fibers and wall motion in liquid crystals
Partial Differential Equations in Applied Mathematics,
2020
DOI:10.1016/j.padiff.2020.100012



[21]

Numerical solution of BurgerHuxley second order partial differential equations using splines
INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019,
2020
DOI:10.1063/5.0027712



[22]

Finite Dimensional Dynamics and Exact Solutions of Burgers – Huxley Equation
2019 Twelfth International Conference "Management of largescale system development" (MLSD),
2019
DOI:10.1109/MLSD.2019.8910973



[23]

A generalized model for compact stars
The European Physical Journal C,
2016
DOI:10.1140/epjc/s1005201640900


