[1]

A new solution of the fractional neutron point kinetics equations using symmetry and the Heaviside's expansion formula
Progress in Nuclear Energy,
2024
DOI:10.1016/j.pnucene.2024.105168



[2]

A new solution of the fractional neutron point kinetics equations using symmetry and the Heaviside's expansion formula
Progress in Nuclear Energy,
2024
DOI:10.1016/j.pnucene.2024.105168



[3]

A new point kinetics model for ADStype reactor using the importance function associated to the fission rate as weight function
Annals of Nuclear Energy,
2023
DOI:10.1016/j.anucene.2023.109869



[4]

A new point kinetics model for ADStype reactor using the importance function associated to the fission rate as weight function
Annals of Nuclear Energy,
2023
DOI:10.1016/j.anucene.2023.109869



[5]

Spectrum analysis of two energy groups spacedependent neutron telegraph kinetics model
Annals of Nuclear Energy,
2022
DOI:10.1016/j.anucene.2022.109285



[6]

Spectrum analysis of two energy groups spacedependent neutron telegraph kinetics model
Annals of Nuclear Energy,
2022
DOI:10.1016/j.anucene.2022.109285



[7]

On a point kinetic model for nuclear reactors considering the variation in fuel composition
Progress in Nuclear Energy,
2020
DOI:10.1016/j.pnucene.2019.103134



[8]

Inverse method to obtain reactivity in nuclear reactors with P1 point reactor kinetics model using matrix formulation
Nuclear Engineering and Technology,
2020
DOI:10.1016/j.net.2020.07.003



[9]

Adjusted mean generation time parameter in the neutron point kinetics equations
Annals of Nuclear Energy,
2019
DOI:10.1016/j.anucene.2019.05.019



[10]

Higher orders of Magnus expansion for point kinetics telegraph model
Progress in Nuclear Energy,
2019
DOI:10.1016/j.pnucene.2018.08.018



[11]

Response of the pointreactor telegraph kinetics to time varying reactivities
Progress in Nuclear Energy,
2017
DOI:10.1016/j.pnucene.2017.03.008



[12]

On the stability of fractional neutron point kinetics (FNPK)
Applied Mathematical Modelling,
2017
DOI:10.1016/j.apm.2016.12.015



[13]

The calculation of the reactivity by the telegraph equation
Annals of Nuclear Energy,
2017
DOI:10.1016/j.anucene.2017.06.017



[14]

A note on “Comment on the paper: EspinosaParedes, et al., 2011. Fractional neutron point kinetics equations for nuclear reactor dynamics. Ann. Nucl. Energy 38, 307–330.” by A.E. Aboanber, A.A. Nahla
Annals of Nuclear Energy,
2016
DOI:10.1016/j.anucene.2015.11.028



[15]

Formulation of a point reactor kinetics model based on the neutron telegraph equation
Annals of Nuclear Energy,
2016
DOI:10.1016/j.anucene.2016.01.011



[16]

A note on “Comment on the paper: EspinosaParedes, et al., 2011. Fractional neutron point kinetics equations for nuclear reactor dynamics. Ann. Nucl. Energ. 38, 307–330.” by A. E. Aboanber, A. A. Nahla
Annals of Nuclear Energy,
2016
DOI:10.1016/j.anucene.2016.01.012



[17]

Effect of the time variation of the neutron current density in the calculation of the reactivity
Annals of Nuclear Energy,
2016
DOI:10.1016/j.anucene.2016.05.022


