[1]
|
State of Charge Estimation for Electric Vehicles Using Random Forest
Green Energy and Intelligent Transportation,
2024
DOI:10.1016/j.geits.2024.100177
|
|
|
[2]
|
Optimal battery state of charge parameter estimation and forecasting using non-linear autoregressive exogenous
Materials Science for Energy Technologies,
2023
DOI:10.1016/j.mset.2023.05.003
|
|
|
[3]
|
Artificial Intelligence and Industrial Applications
Lecture Notes in Networks and Systems,
2023
DOI:10.1007/978-3-031-43520-1_6
|
|
|
[4]
|
Establishment of a Lithium-Ion Battery Model Considering Environmental Temperature for Battery State of Charge Estimation
Journal of The Electrochemical Society,
2023
DOI:10.1149/1945-7111/ad11af
|
|
|
[5]
|
Optimal battery state of charge parameter estimation and forecasting using non-linear autoregressive exogenous
Materials Science for Energy Technologies,
2023
DOI:10.1016/j.mset.2023.05.003
|
|
|
[6]
|
Methods for estimating lithium-ion battery state of charge for use in electric vehicles: a review
Energy Harvesting and Systems,
2022
DOI:10.1515/ehs-2021-0039
|
|
|
[7]
|
Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithium‐Ion Batteries
Advanced Materials,
2022
DOI:10.1002/adma.202101474
|
|
|
[8]
|
Application of Neural Networks in a Sodium-Nickel Chloride Battery Management System
Journal of Control, Automation and Electrical Systems,
2022
DOI:10.1007/s40313-021-00847-1
|
|
|
[9]
|
Methods for estimating lithium-ion battery state of charge for use in electric vehicles: a review
Energy Harvesting and Systems,
2022
DOI:10.1515/ehs-2021-0039
|
|
|
[10]
|
Computationally Efficient State-of-Charge Estimation in Li-Ion Batteries Using Enhanced Dual-Kalman Filter
Energies,
2022
DOI:10.3390/en15103717
|
|
|
[11]
|
Methods for estimating lithium-ion battery state of charge for use in electric vehicles: a review
Energy Harvesting and Systems,
2022
DOI:10.1515/ehs-2021-0039
|
|
|
[12]
|
Development of a Dynamic Model of Lithium Ion Battery Pack for Battery System Monitoring Algorithms in Electric Vehicles
2021 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe),
2021
DOI:10.23919/EPE21ECCEEurope50061.2021.9570709
|
|
|
[13]
|
Predicting the state of charge and health of batteries using data-driven machine learning
Nature Machine Intelligence,
2020
DOI:10.1038/s42256-020-0156-7
|
|
|
[14]
|
Advances in Power and Control Engineering
Lecture Notes in Electrical Engineering,
2020
DOI:10.1007/978-981-15-0313-9_12
|
|
|
[15]
|
Predicting the state of charge and health of batteries using data-driven machine learning
Nature Machine Intelligence,
2020
DOI:10.1038/s42256-020-0156-7
|
|
|
[16]
|
Robust Artificial Neural Network-Based Models for Accurate Surface Temperature Estimation of Batteries
IEEE Transactions on Industry Applications,
2020
DOI:10.1109/TIA.2020.3001256
|
|
|
[17]
|
State of Charge Estimation of Lead-Acid Battery with Coulomb Counting and Feed-Forward Neural Network Method
2020 FORTEI-International Conference on Electrical Engineering (FORTEI-ICEE),
2020
DOI:10.1109/FORTEI-ICEE50915.2020.9249870
|
|
|
[18]
|
Analysis of NARXNN for State of Charge Estimation for Li-ion Batteries on various Drive Cycles
2020 8th International Conference on Power Electronics Systems and Applications (PESA),
2020
DOI:10.1109/PESA50370.2020.9344002
|
|
|
[19]
|
Unmanned Aerial Vehicle (UAV) Attitude Estimation Using Artificial Neural Network Approach
2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ),
2019
DOI:10.1109/HNICEM48295.2019.9072841
|
|
|
[20]
|
Estimation of state of charge for lithium-ion batteries - A Review
AIMS Energy,
2019
DOI:10.3934/energy.2019.2.186
|
|
|
[21]
|
A Neural Network-Based Robust Online SOC and SOH Estimation for Sealed Lead–Acid Batteries in Renewable Systems
Arabian Journal for Science and Engineering,
2019
DOI:10.1007/s13369-018-3200-8
|
|
|
[22]
|
Automation 2018
Advances in Intelligent Systems and Computing,
2018
DOI:10.1007/978-3-319-77179-3_70
|
|
|
[23]
|
Dynamical Systems in Applications
Springer Proceedings in Mathematics & Statistics,
2018
DOI:10.1007/978-3-319-96601-4_5
|
|
|
[24]
|
Lead-Acid Batteries for Future Automobiles
2017
DOI:10.1016/B978-0-444-63700-0.00014-3
|
|
|