[1]
|
A New Perspective on the Stochastic Fractional Order Materialized by the Exact Solutions of Allen-Cahn Equation
International Journal of Mathematical, Engineering and Management Sciences,
2023
DOI:10.33889/IJMEMS.2023.8.5.052
|
|
|
[2]
|
Analytical study of nonlinear models using a modified Schrödinger’s equation and logarithmic transformation
Results in Physics,
2023
DOI:10.1016/j.rinp.2023.107183
|
|
|
[3]
|
A variety of fractional soliton solutions for three important coupled models arising in mathematical physics
International Journal of Modern Physics B,
2022
DOI:10.1142/S0217979222500023
|
|
|
[4]
|
Novel exact and solitary solutions of conformable Huxley equation with three effective methods
Journal of Ocean Engineering and Science,
2022
DOI:10.1016/j.joes.2022.06.010
|
|
|
[5]
|
New conservation laws and exact solutions of the special case of the fifth-order KdV equation
Journal of Ocean Engineering and Science,
2022
DOI:10.1016/j.joes.2021.09.010
|
|
|
[6]
|
On the optical solutions to nonlinear Schrödinger equation with second-order spatiotemporal dispersion
Open Physics,
2021
DOI:10.1515/phys-2021-0013
|
|
|
[7]
|
Exact solitary wave solutions for a system of some nonlinear space–time fractional differential equations
Pramana,
2020
DOI:10.1007/s12043-019-1864-6
|
|
|
[8]
|
Abundant traveling wave solutions to the resonant nonlinear Schrödinger’s equation with variable coefficients
Modern Physics Letters B,
2020
DOI:10.1142/S0217984920501183
|
|
|
[9]
|
Propagation of the ultra-short femtosecond pulses and the rogue wave in an optical fiber
Journal of Optics,
2020
DOI:10.1007/s12596-020-00614-6
|
|
|
[10]
|
New Solutions of Gardner's Equation Using Two Analytical Methods
Frontiers in Physics,
2019
DOI:10.3389/fphy.2019.00202
|
|
|
[11]
|
Study on Fractional Differential Equations with Modified Riemann–Liouville Derivative via Kudryashov Method
International Journal of Nonlinear Sciences and Numerical Simulation,
2019
DOI:10.1515/ijnsns-2015-0151
|
|
|
[12]
|
Abundant soliton solutions for the Hirota–Maccari equation via the generalized exponential rational function method
Modern Physics Letters B,
2019
DOI:10.1142/S0217984919501069
|
|
|
[13]
|
Study on Fractional Differential Equations with Modified Riemann–Liouville Derivative via Kudryashov Method
International Journal of Nonlinear Sciences and Numerical Simulation,
2019
DOI:10.1515/ijnsns-2015-0151
|
|
|
[14]
|
($$\frac{G^{'}}{G^{2}}$$G′G2)-Expansion method: new traveling wave solutions for some nonlinear fractional partial differential equations
Optical and Quantum Electronics,
2018
DOI:10.1007/s11082-018-1391-6
|
|
|
[15]
|
Optical solitons with quadratic–cubic nonlinearity and fractional temporal evolution
Modern Physics Letters B,
2018
DOI:10.1142/S0217984918503177
|
|
|
[16]
|
The double auxiliary equations method and its application to space-time fractional nonlinear equations
Journal of Ocean Engineering and Science,
2018
DOI:10.1016/j.joes.2018.12.002
|
|
|
[17]
|
New exact solutions of some nonlinear evolution equations of pseudoparabolic type
Optical and Quantum Electronics,
2017
DOI:10.1007/s11082-017-1070-z
|
|
|
[18]
|
Applications of two reliable methods for solving a nonlinear conformable time-fractional equation
Optical and Quantum Electronics,
2017
DOI:10.1007/s11082-017-1151-z
|
|
|
[19]
|
Exact traveling wave solutions of the Wu–Zhang system describing (1 + 1)-dimensional dispersive long wave
Optical and Quantum Electronics,
2017
DOI:10.1007/s11082-017-1231-0
|
|
|
[20]
|
Solving Space-Time Fractional Differential Equations by Using Modified Simple Equation Method
Communications in Theoretical Physics,
2016
DOI:10.1088/0253-6102/65/5/563
|
|
|
[21]
|
Travelling wave solutions to some time–space nonlinear evolution equations
Applied Mathematics and Computation,
2014
DOI:10.1016/j.amc.2014.09.104
|
|
|