[1]
|
Enhancement of Catalytic Efficiency of Enzymatic Redox Reactions by Composing Horseradish Peroxidase-Modified Electrode with Ionic Liquids
Liquids,
2024
DOI:10.3390/liquids4020020
|
|
|
[2]
|
Ultrafiltration operational conditions influence in the antibacterial activity of native and thermally treated lysozyme
Comptes Rendus. Chimie,
2024
DOI:10.5802/crchim.217
|
|
|
[3]
|
Scattering approaches to unravel protein solution behaviors in ionic liquids and deep eutectic solvents: From basic principles to recent developments
Advances in Colloid and Interface Science,
2024
DOI:10.1016/j.cis.2024.103242
|
|
|
[4]
|
An automatic approach for the evaluation of the effect of ionic liquids and deep eutectic solvents on elastase
Journal of Molecular Liquids,
2023
DOI:10.1016/j.molliq.2023.121240
|
|
|
[5]
|
An automatic approach for the evaluation of the effect of ionic liquids and deep eutectic solvents on elastase
Journal of Molecular Liquids,
2023
DOI:10.1016/j.molliq.2023.121240
|
|
|
[6]
|
Impact of industrial stress factors on lysozyme enzyme: Role of denaturation processes and initial protein activity
Sustainable Chemistry and Pharmacy,
2023
DOI:10.1016/j.scp.2022.100964
|
|
|
[7]
|
Ultrafiltration operational conditions influence in the antibacterial activity of native and thermally treated lysozyme
Comptes Rendus. Chimie,
2023
DOI:10.5802/crchim.217
|
|
|
[8]
|
An automatic approach for the evaluation of the effect of ionic liquids and deep eutectic solvents on elastase
Journal of Molecular Liquids,
2023
DOI:10.1016/j.molliq.2023.121240
|
|
|
[9]
|
Impact of industrial stress factors on lysozyme enzyme: Role of denaturation processes and initial protein activity
Sustainable Chemistry and Pharmacy,
2023
DOI:10.1016/j.scp.2022.100964
|
|
|
[10]
|
Impact of industrial stress factors on lysozyme enzyme: Role of denaturation processes and initial protein activity
Sustainable Chemistry and Pharmacy,
2023
DOI:10.1016/j.scp.2022.100964
|
|
|
[11]
|
Ultrafiltration operational conditions influence in the antibacterial activity of native and thermally treated lysozyme
Comptes Rendus. Chimie,
2023
DOI:10.5802/crchim.217
|
|
|
[12]
|
Promotion of the redox reaction at horseradish peroxidase modified electrode combined with ionic liquids under irreversible electrochemical conditions
Results in Chemistry,
2022
DOI:10.1016/j.rechem.2022.100666
|
|
|
[13]
|
Promotion of the redox reaction at horseradish peroxidase modified electrode combined with ionic liquids under irreversible electrochemical conditions
Results in Chemistry,
2022
DOI:10.1016/j.rechem.2022.100666
|
|
|
[14]
|
Molecular simulations explain the exceptional thermal stability, solvent tolerance and solubility of protein–polymer surfactant bioconjugates in ionic liquids
Physical Chemistry Chemical Physics,
2022
DOI:10.1039/D2CP02636H
|
|
|
[15]
|
Ionic liquids as protein stabilizers for biological and biomedical applications: A review
Biotechnology Advances,
2022
DOI:10.1016/j.biotechadv.2022.108055
|
|
|
[16]
|
Behavior of lysozyme within ionic liquid-in-water microemulsions
Journal of Molecular Liquids,
2021
DOI:10.1016/j.molliq.2021.115350
|
|
|
[17]
|
Ionic Liquid-Modified Gold Nanoparticles for Enhancing Antimicrobial Activity and Thermal Stability of Enzymes
ACS Applied Nano Materials,
2021
DOI:10.1021/acsanm.1c00401
|
|
|
[18]
|
Sustainable Solutions for Environmental Pollution
2021
DOI:10.1002/9781119785439.ch9
|
|
|
[19]
|
Newly isolated lytic bacteriophages for Staphylococcus intermedius, structurally and functionally stabilized in a hydroxyethylcellulose gel containing choline geranate: Potential for transdermal permeation in veterinary phage therapy
Research in Veterinary Science,
2021
DOI:10.1016/j.rvsc.2020.12.013
|
|
|
[20]
|
Added value of ionic liquids in a biocatalytic process: An automatic approach
Process Biochemistry,
2021
DOI:10.1016/j.procbio.2021.06.003
|
|
|
[21]
|
Ionic Liquid-Modified Gold Nanoparticles for Enhancing Antimicrobial Activity and Thermal Stability of Enzymes
ACS Applied Nano Materials,
2021
DOI:10.1021/acsanm.1c00401
|
|
|
[22]
|
Behavior of lysozyme within ionic liquid-in-water microemulsions
Journal of Molecular Liquids,
2021
DOI:10.1016/j.molliq.2021.115350
|
|
|
[23]
|
Impact of the Alkyl Side Chains of Cations and Anions on the Activity and Renaturation of Lysozyme: A Systematic Study Performed Using Six Amino‐Acid‐Based Ionic Liquids
ChemistrySelect,
2021
DOI:10.1002/slct.202004357
|
|
|
[24]
|
Added value of ionic liquids in a biocatalytic process: An automatic approach
Process Biochemistry,
2021
DOI:10.1016/j.procbio.2021.06.003
|
|
|
[25]
|
Activity and thermal stability of Mycobacterium tuberculosis PE1 and PE2 proteins esterase domain in the presence of aprotic ionic liquids
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,
2020
DOI:10.1016/j.saa.2019.117477
|
|
|
[26]
|
Capillary zone electrophoresis of proteins applying ionic liquids for dynamic coating and as background electrolyte component
ELECTROPHORESIS,
2020
DOI:10.1002/elps.202000204
|
|
|
[27]
|
Interactions of betainium and imidazolium-based ionic liquids with peptide amphiphiles and their implications in the formation of nanohybrid composite gels
Journal of Sol-Gel Science and Technology,
2020
DOI:10.1007/s10971-020-05434-5
|
|
|
[28]
|
Conformational Free-Energy Landscapes of Alanine Dipeptide in Hydrated Ionic Liquids from Enhanced Sampling Methods
The Journal of Physical Chemistry B,
2020
DOI:10.1021/acs.jpcb.0c05629
|
|
|
[29]
|
Capillary zone electrophoresis of proteins applying ionic liquids for dynamic coating and as background electrolyte component
ELECTROPHORESIS,
2020
DOI:10.1002/elps.202000204
|
|
|
[30]
|
Conformational Free-Energy Landscapes of Alanine Dipeptide in Hydrated Ionic Liquids from Enhanced Sampling Methods
The Journal of Physical Chemistry B,
2020
DOI:10.1021/acs.jpcb.0c05629
|
|
|
[31]
|
Structural Destabilization of Azurin by Imidazolium Chloride Ionic Liquids in Aqueous Solution
The Journal of Physical Chemistry B,
2019
DOI:10.1021/acs.jpcb.9b04113
|
|
|
[32]
|
Structural Destabilization of Azurin by Imidazolium Chloride Ionic Liquids in Aqueous Solution
The Journal of Physical Chemistry B,
2019
DOI:10.1021/acs.jpcb.9b04113
|
|
|
[33]
|
Ether-functionalized ionic liquids for nonaqueous biocatalysis: Effect of different cation cores
Process Biochemistry,
2019
DOI:10.1016/j.procbio.2019.03.018
|
|
|
[34]
|
Computational Models for Biomedical Reasoning and Problem Solving
Advances in Bioinformatics and Biomedical Engineering,
2019
DOI:10.4018/978-1-5225-7467-5.ch008
|
|
|
[35]
|
Effect of water and ionic liquids on biomolecules
Biophysical Reviews,
2018
DOI:10.1007/s12551-018-0399-2
|
|
|
[36]
|
Effect of Ionic Liquids on the Fibril-Formation and Gel Properties of Grass Carp (Ctenopharyngodon idellus) Skin Collagen
Macromolecular Research,
2018
DOI:10.1007/s13233-018-6081-5
|
|
|
[37]
|
Waste Biorefinery
2018
DOI:10.1016/B978-0-444-63992-9.00017-3
|
|
|
[38]
|
Biochar - An Imperative Amendment for Soil and the Environment [Working Title]
2018
DOI:10.5772/intechopen.82094
|
|
|
[39]
|
Effect of Imidazolium-Based Ionic Liquids on the Structure and Stability of Stem Bromelain: Concentration and Alkyl Chain Length Effect
The Journal of Physical Chemistry B,
2018
DOI:10.1021/acs.jpcb.8b04661
|
|
|
[40]
|
Effect of Imidazolium-Based Ionic Liquids on the Structure and Stability of Stem Bromelain: Concentration and Alkyl Chain Length Effect
The Journal of Physical Chemistry B,
2018
DOI:10.1021/acs.jpcb.8b04661
|
|
|
[41]
|
Exploring the Effect of Choline-Based Ionic Liquids on the Stability and Activity of Stem Bromelain
The Journal of Physical Chemistry B,
2018
DOI:10.1021/acs.jpcb.8b08173
|
|
|
[42]
|
Exploring the Effect of Choline-Based Ionic Liquids on the Stability and Activity of Stem Bromelain
The Journal of Physical Chemistry B,
2018
DOI:10.1021/acs.jpcb.8b08173
|
|
|
[43]
|
Cryopreservation of Proteins Using Ionic Liquids: A Case Study of Cytochrome c
The Journal of Physical Chemistry B,
2017
DOI:10.1021/acs.jpcb.7b05158
|
|
|
[44]
|
Cryopreservation of Proteins Using Ionic Liquids: A Case Study of Cytochrome c
The Journal of Physical Chemistry B,
2017
DOI:10.1021/acs.jpcb.7b05158
|
|
|
[45]
|
Effect of N‐Butyl‐N‐Methyl‐Morpholinium Bromide Ionic Liquid on the Conformation Stability of Human Serum Albumin
ChemistrySelect,
2017
DOI:10.1002/slct.201601477
|
|
|
[46]
|
Biocompatibility of ionic liquids towards protein stability: A comprehensive overview on the current understanding and their implications
International Journal of Biological Macromolecules,
2017
DOI:10.1016/j.ijbiomac.2016.12.005
|
|
|
[47]
|
Effect of N-Butyl-N-Methyl-Morpholinium Bromide Ionic Liquid on the Conformation Stability of Human Serum Albumin
ChemistrySelect,
2017
DOI:10.1002/slct.201601477
|
|
|
[48]
|
Local ion hydration structure in aqueous imidazolium-based ionic liquids: The effects of concentration and anion nature
Journal of Molecular Liquids,
2017
DOI:10.1016/j.molliq.2017.09.087
|
|
|
[49]
|
Direct Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometric Analysis of Lysozyme Contained in Hen Egg White
European Journal of Mass Spectrometry,
2016
DOI:10.1255/ejms.1403
|
|
|
[50]
|
Protein stabilization and enzyme activation in ionic liquids: specific ion effects
Journal of Chemical Technology & Biotechnology,
2016
DOI:10.1002/jctb.4837
|
|
|
[51]
|
Kinetics and mass spectrometric measurements of myoglobin unfolding in aqueous ionic liquid solutions
International Journal of Biological Macromolecules,
2016
DOI:10.1016/j.ijbiomac.2015.12.067
|
|
|
[52]
|
Properties of an ionic liquid-tolerant Bacillus amyloliquefaciens CMW1 and its extracellular protease
Extremophiles,
2016
DOI:10.1007/s00792-016-0832-z
|
|
|
[53]
|
Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications
Biotechnology Journal,
2016
DOI:10.1002/biot.201500603
|
|
|
[54]
|
Impact of imidazolium-based ionic liquids on the structure and stability of lysozyme
Spectroscopy Letters,
2016
DOI:10.1080/00387010.2016.1167089
|
|
|
[55]
|
Protein stabilization and enzyme activation in ionic liquids: specific ion effects
Journal of Chemical Technology & Biotechnology,
2016
DOI:10.1002/jctb.4837
|
|
|
[56]
|
Kinetics and mass spectrometric measurements of myoglobin unfolding in aqueous ionic liquid solutions
International Journal of Biological Macromolecules,
2016
DOI:10.1016/j.ijbiomac.2015.12.067
|
|
|
[57]
|
Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications
Biotechnology Journal,
2016
DOI:10.1002/biot.201500603
|
|
|
[58]
|
Kinetics and mass spectrometric measurements of myoglobin unfolding in aqueous ionic liquid solutions
International Journal of Biological Macromolecules,
2016
DOI:10.1016/j.ijbiomac.2015.12.067
|
|
|
[59]
|
Does 1-Allyl-3-methylimidazolium chloride Act as a Biocompatible Solvent for Stem Bromelain?
The Journal of Physical Chemistry B,
2016
DOI:10.1021/acs.jpcb.6b03912
|
|
|
[60]
|
Does 1-Allyl-3-methylimidazolium chloride Act as a Biocompatible Solvent for Stem Bromelain?
The Journal of Physical Chemistry B,
2016
DOI:10.1021/acs.jpcb.6b03912
|
|
|
[61]
|
Kinetics and mass spectrometric measurements of myoglobin unfolding in aqueous ionic liquid solutions
International Journal of Biological Macromolecules,
2016
DOI:10.1016/j.ijbiomac.2015.12.067
|
|
|
[62]
|
Direct Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometric Analysis of Lysozyme Contained in Hen Egg White
European Journal of Mass Spectrometry,
2016
DOI:10.1255/ejms.1403
|
|
|
[63]
|
Tuning of hydrophilic ionic liquids concentration: A way to prevent enzyme instability
Journal of Molecular Catalysis B: Enzymatic,
2015
DOI:10.1016/j.molcatb.2015.09.002
|
|
|
[64]
|
Densities and Speeds of Sound of Glycine, l-Alanine, and l-Valine in Aqueous 1-Ethyl-3-methylimidazolium Chloride Solutions at Different Temperatures
Journal of Chemical & Engineering Data,
2015
DOI:10.1021/je500324a
|
|
|
[65]
|
Electrostatic Forces Mediated by Choline Dihydrogen Phosphate Stabilize Collagen
The Journal of Physical Chemistry B,
2015
DOI:10.1021/acs.jpcb.5b07055
|
|
|
[66]
|
Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis
Biochemical Engineering Journal,
2015
DOI:10.1016/j.bej.2015.03.005
|
|
|
[67]
|
Separation and purification of thymopentin with molecular imprinting membrane by solid phase extraction disks
Journal of Pharmaceutical and Biomedical Analysis,
2015
DOI:10.1016/j.jpba.2014.07.016
|
|
|
[68]
|
Densities and Speeds of Sound of Glycine, l-Alanine, and l-Valine in Aqueous 1-Ethyl-3-methylimidazolium Chloride Solutions at Different Temperatures
Journal of Chemical & Engineering Data,
2015
DOI:10.1021/je500324a
|
|
|
[69]
|
Thermal preparation of lysozyme-imprinted microspheres by using ionic liquid as a stabilizer
Analytical and Bioanalytical Chemistry,
2014
DOI:10.1007/s00216-014-8133-9
|
|
|
[70]
|
Recent Advances in the Applications of Ionic Liquids in Protein Stability and Activity: A Review
Applied Biochemistry and Biotechnology,
2014
DOI:10.1007/s12010-014-0813-6
|
|
|
[71]
|
Effect of ionic liquids on the different hierarchical order of type I collagen
Colloids and Surfaces B: Biointerfaces,
2014
DOI:10.1016/j.colsurfb.2014.03.014
|
|
|
[72]
|
How can aprotic ionic liquids affect enzymatic enantioselectivity?
Journal of Biomedical Science and Engineering,
2013
DOI:10.4236/jbise.2013.610117
|
|
|
[73]
|
Fluorescence Spectrometric Studies on the Binding of an Amino-Functionalized Ionic Liquid to Cytochromec
Spectroscopy Letters,
2013
DOI:10.1080/00387010.2012.724511
|
|
|
[74]
|
Ionic liquids for energy applications
MRS Bulletin,
2013
DOI:10.1557/mrs.2013.154
|
|
|
[75]
|
Interaction of an amino-functionalized ionic liquid with enzymes: A fluorescence spectroscopy study
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,
2013
DOI:10.1016/j.saa.2012.12.038
|
|
|
[76]
|
FCS Study of the Structural Stability of Lysozyme in the Presence of Morpholinium Salts
The Journal of Physical Chemistry B,
2013
DOI:10.1021/jp409842d
|
|
|
[77]
|
Phase Transition of Poly(N-isopropylacrylamide) in Aqueous Protic Ionic Liquids: Kosmotropic versus Chaotropic Anions and Their Interaction with Water
The Journal of Physical Chemistry B,
2013
DOI:10.1021/jp4043232
|
|
|
[78]
|
FCS Study of the Structural Stability of Lysozyme in the Presence of Morpholinium Salts
The Journal of Physical Chemistry B,
2013
DOI:10.1021/jp409842d
|
|
|
[79]
|
Phase Transition of Poly(N-isopropylacrylamide) in Aqueous Protic Ionic Liquids: Kosmotropic versus Chaotropic Anions and Their Interaction with Water
The Journal of Physical Chemistry B,
2013
DOI:10.1021/jp4043232
|
|
|
[80]
|
Significant stabilization of ribonuclease A by additive effects
The FEBS Journal,
2012
DOI:10.1111/j.1742-4658.2012.08632.x
|
|
|
[81]
|
Significant stabilization of ribonuclease A by additive effects
FEBS Journal,
2012
DOI:10.1111/j.1742-4658.2012.08632.x
|
|
|
[82]
|
Effect of ionic liquid on activity, stability, and structure of enzymes: A review
International Journal of Biological Macromolecules,
2012
DOI:10.1016/j.ijbiomac.2012.06.020
|
|
|
[83]
|
Immobilization of Lysozyme on Biomass Charcoal Powder Derived from Plant Biomass Wastes
Journal of Biomaterials and Nanobiotechnology,
2012
DOI:10.4236/jbnb.2012.34045
|
|
|
[84]
|
Increase in thermal stability of proteins adsorbed on biomass charcoal powder prepared from plant biomass wastes
Journal of Biomedical Science and Engineering,
2011
DOI:10.4236/jbise.2011.411086
|
|
|