[1]
|
Important extremophilic model microorganisms in astrobiology
Frontiers in Life Sciences and Related Technologies,
2023
DOI:10.51753/flsrt.1299840
|
|
|
[2]
|
Into the Unknown: Microbial Communities in Caves, Their Role, and Potential Use
Microorganisms,
2022
DOI:10.3390/microorganisms10020222
|
|
|
[3]
|
Into the Unknown: Microbial Communities in Caves, Their Role, and Potential Use
Microorganisms,
2022
DOI:10.3390/microorganisms10020222
|
|
|
[4]
|
Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years
Microbial Biotechnology,
2022
DOI:10.1111/1751-7915.13927
|
|
|
[5]
|
Lithic cyanobacterial communities in the polyextreme Sahara Desert: implications for the search for the limits of life
Environmental Microbiology,
2022
DOI:10.1111/1462-2920.15850
|
|
|
[6]
|
Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars-like conditions outside the space station
Scientific Reports,
2022
DOI:10.1038/s41598-022-12631-5
|
|
|
[7]
|
Survival of desert algae Chlorella exposed to Mars-like near space environment
Life Sciences in Space Research,
2021
DOI:10.1016/j.lssr.2021.02.003
|
|
|
[8]
|
Biofilms in caves: easy method for the assessment of dominant phototrophic groups/taxa in situ
Environmental Monitoring and Assessment,
2020
DOI:10.1007/s10661-020-08686-4
|
|
|
[9]
|
Mimicking the Martian Hydrological Cycle: A Set-Up to Introduce Liquid Water in Vacuum
Sensors,
2020
DOI:10.3390/s20216150
|
|
|
[10]
|
Super-Earths, M Dwarfs, and Photosynthetic Organisms: Habitability in the Lab
Life,
2020
DOI:10.3390/life11010010
|
|
|
[11]
|
Two new ene-reductases from photosynthetic extremophiles enlarge the panel of old yellow enzymes: CtOYE and GsOYE
Applied Microbiology and Biotechnology,
2020
DOI:10.1007/s00253-019-10287-2
|
|
|
[12]
|
A New Remote Sensing-Based System for the Monitoring and Analysis of Growth and Gas Exchange Rates of Photosynthetic Microorganisms Under Simulated Non-Terrestrial Conditions
Frontiers in Plant Science,
2020
DOI:10.3389/fpls.2020.00182
|
|
|
[13]
|
Loss of Filamentous Multicellularity in Cyanobacteria: the Extremophile Gloeocapsopsis sp. Strain UTEX B3054 Retained Multicellular Features at the Genomic and Behavioral Levels
Journal of Bacteriology,
2020
DOI:10.1128/JB.00514-19
|
|
|
[14]
|
Mimicking the Martian Hydrological Cycle: A Set-Up to Introduce Liquid Water in Vacuum
Sensors,
2020
DOI:10.3390/s20216150
|
|
|
[15]
|
Super-Earths, M Dwarfs, and Photosynthetic Organisms: Habitability in the Lab
Life,
2020
DOI:10.3390/life11010010
|
|
|
[16]
|
Model Ecosystems in Extreme Environments
2019
DOI:10.1016/B978-0-12-812742-1.00006-4
|
|
|
[17]
|
Desert cyanobacteria under space and planetary simulations: a tool for searching for life beyond Earth and supporting human space exploration
International Journal of Astrobiology,
2018
DOI:10.1017/S147355041800037X
|
|
|
[18]
|
Evaluation of the Resistance of Chroococcidiopsis spp. to Sparsely and Densely Ionizing Irradiation
Astrobiology,
2017
DOI:10.1089/ast.2015.1450
|
|
|
[19]
|
Adaption of Microbial Life to Environmental Extremes
2017
DOI:10.1007/978-3-319-48327-6_6
|
|
|
[20]
|
Biological colonization on stone monuments: A new low impact cleaning method
Journal of Cultural Heritage,
2017
DOI:10.1016/j.culher.2017.09.004
|
|
|
[21]
|
Extremophile Mikroorganismen
2017
DOI:10.1007/978-3-662-55595-8_3
|
|
|
[22]
|
Extremophile Mikroorganismen
2017
DOI:10.1007/978-3-662-55595-8_9
|
|
|
[23]
|
Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism
Origins of Life and Evolution of Biospheres,
2016
DOI:10.1007/s11084-015-9458-x
|
|
|
[24]
|
Sustainable life support on Mars – the potential roles of cyanobacteria
International Journal of Astrobiology,
2016
DOI:10.1017/S147355041500021X
|
|
|
[25]
|
Preservation of Biomarkers from Cyanobacteria Mixed with MarsLike Regolith Under Simulated Martian Atmosphere and UV Flux
Origins of Life and Evolution of Biospheres,
2016
DOI:10.1007/s11084-015-9467-9
|
|
|
[26]
|
An ESA roadmap for geobiology in space exploration
Acta Astronautica,
2016
DOI:10.1016/j.actaastro.2015.10.022
|
|
|
[27]
|
Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions
International Journal of Astrobiology,
2016
DOI:10.1017/S147355041500018X
|
|
|
[28]
|
Preservation of Biomarkers from Cyanobacteria Mixed with MarsLike Regolith Under Simulated Martian Atmosphere and UV Flux
Origins of Life and Evolution of Biospheres,
2016
DOI:10.1007/s11084-015-9467-9
|
|
|
[29]
|
Synchronous in-field application of life-detection techniques in planetary analog missions
Planetary and Space Science,
2015
DOI:10.1016/j.pss.2014.11.006
|
|
|
[30]
|
RNA-based molecular survey of biodiversity of limestone tombstone microbiota in response to atmospheric sulphur pollution
Letters in Applied Microbiology,
2015
DOI:10.1111/lam.12345
|
|
|
[31]
|
Development of a Laboratory Model of a Phototroph-Heterotroph Mixed-Species Biofilm at the Stone/Air Interface
Frontiers in Microbiology,
2015
DOI:10.3389/fmicb.2015.01251
|
|
|
[32]
|
Comparative analysis of cyanobacteria inhabiting rocks with different light transmittance in the Mojave Desert: a Mars terrestrial analogue
International Journal of Astrobiology,
2014
DOI:10.1017/S1473550414000056
|
|
|