[1]
|
Degradation of antibiotics in aquaculture wastewater by bio-nanoparticles: A critical review
Ain Shams Engineering Journal,
2023
DOI:10.1016/j.asej.2022.101981
|
|
|
[2]
|
Advanced Application of Nanotechnology to Industrial Wastewater
2023
DOI:10.1007/978-981-99-3292-4_11
|
|
|
[3]
|
Recent Trends in Nanotechnology for Sustainable Living and Environment
Lecture Notes in Mechanical Engineering,
2023
DOI:10.1007/978-981-99-3386-0_8
|
|
|
[4]
|
Characterization and antibacterial activity of silver nanoparticles synthesized by soil-dwelling Bacillus thuringiensis against drug-resistant bacteria
Biologia,
2023
DOI:10.1007/s11756-023-01381-y
|
|
|
[5]
|
Degradation of antibiotics in aquaculture wastewater by bio-nanoparticles: A critical review
Ain Shams Engineering Journal,
2023
DOI:10.1016/j.asej.2022.101981
|
|
|
[6]
|
Modern Nanotechnology
2023
DOI:10.1007/978-3-031-31104-8_6
|
|
|
[7]
|
The Effects of Black Phosphorus‐Based Composites on Foodborne Pathogen Growth and Biofilm
ChemistrySelect,
2023
DOI:10.1002/slct.202301882
|
|
|
[8]
|
Optimization of the biosynthesis of silver nanoparticles using bacterial extracts and their antimicrobial potential
Biotechnology Reports,
2023
DOI:10.1016/j.btre.2023.e00816
|
|
|
[9]
|
Applications of Nanotechnology in Microbiology
2023
DOI:10.1007/978-3-031-49933-3_1
|
|
|
[10]
|
Handbook of Consumer Nanoproducts
2022
DOI:10.1007/978-981-16-8698-6_81
|
|
|
[11]
|
Green synthesis and characterization of nanosilver derived from extracellular metabolites of potent Bacillus subtilis for antifungal and eco-friendly action against phytopathogen
BioMetals,
2022
DOI:10.1007/s10534-022-00382-9
|
|
|
[12]
|
Nano-biotechnology for Waste Water Treatment
Water Science and Technology Library,
2022
DOI:10.1007/978-3-031-00812-2_1
|
|
|
[13]
|
Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review
Environmental Research,
2022
DOI:10.1016/j.envres.2021.112202
|
|
|
[14]
|
Nano-reduction of gold and silver ions: A perspective on the fate of microbial laccases as potential biocatalysts in the synthesis of metals (gold and silver) nano-particles
Current Research in Microbial Sciences,
2022
DOI:10.1016/j.crmicr.2021.100098
|
|
|
[15]
|
Green Nanoparticles: The Future of Nanobiotechnology
2022
DOI:10.1007/978-981-16-7106-7_5
|
|
|
[16]
|
Degradation of antibiotics in aquaculture wastewater by bio-nanoparticles: A critical review
Ain Shams Engineering Journal,
2022
DOI:10.1016/j.asej.2022.101981
|
|
|
[17]
|
Microbial Metabolism of Metals and Metalloids
Advances in Environmental Microbiology,
2022
DOI:10.1007/978-3-030-97185-4_6
|
|
|
[18]
|
Characterization of the biosynthesized intracellular and extracellular plasmonic silver nanoparticles using Bacillus cereus and their catalytic reduction of methylene blue
Scientific Reports,
2022
DOI:10.1038/s41598-022-16029-1
|
|
|
[19]
|
Nano-reduction of gold and silver ions: A perspective on the fate of microbial laccases as potential biocatalysts in the synthesis of metals (gold and silver) nano-particles
Current Research in Microbial Sciences,
2022
DOI:10.1016/j.crmicr.2021.100098
|
|
|
[20]
|
Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review
Environmental Research,
2022
DOI:10.1016/j.envres.2021.112202
|
|
|
[21]
|
Biofilm Inhibitory Activity of Actinomycete-Synthesized AgNPs with Low Cytotoxic Effect: Experimental and In Silico Study
Microorganisms,
2022
DOI:10.3390/microorganisms11010102
|
|
|
[22]
|
Synthesis, Characterization and Biomedical Application of Silver Nanoparticles
Materials,
2022
DOI:10.3390/ma15020427
|
|
|
[23]
|
Nanotechnology: an approach for water purification-review
IOP Conference Series: Materials Science and Engineering,
2021
DOI:10.1088/1757-899X/1116/1/012007
|
|
|
[24]
|
Biological Synthesis of Nanocatalysts and Their Applications
Catalysts,
2021
DOI:10.3390/catal11121494
|
|
|
[25]
|
Microbial Rejuvenation of Polluted Environment
Microorganisms for Sustainability,
2021
DOI:10.1007/978-981-15-7455-9_13
|
|
|
[26]
|
Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process
Journal of Genetic Engineering and Biotechnology,
2021
DOI:10.1186/s43141-021-00228-w
|
|
|
[27]
|
Antibacterial efficacy of facile cyanobacterial silver nanoparticles inferred by antioxidant mechanism
Materials Science and Engineering: C,
2021
DOI:10.1016/j.msec.2021.111888
|
|
|
[28]
|
Polymer Nanocomposites Based on Silver Nanoparticles
Engineering Materials,
2021
DOI:10.1007/978-3-030-44259-0_2
|
|
|
[29]
|
Nanotechnology for Advances in Medical Microbiology
Environmental and Microbial Biotechnology,
2021
DOI:10.1007/978-981-15-9916-3_7
|
|
|
[30]
|
Biobased Nanotechnology for Green Applications
Nanotechnology in the Life Sciences,
2021
DOI:10.1007/978-3-030-61985-5_7
|
|
|
[31]
|
Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects
Biomolecules,
2021
DOI:10.3390/biom11060886
|
|
|
[32]
|
Inhibitory Effects of Synthesize Silver Nanoparticles on Cucumber Mosaic Virus Infecting Tomato Plants
International Journal Of Pharmaceutical And Phytopharmacological Research,
2021
DOI:10.51847/Dn3Y66NE2u
|
|
|
[33]
|
Handbook of Consumer Nanoproducts
2021
DOI:10.1007/978-981-15-6453-6_81-1
|
|
|
[34]
|
Nanotechnology for Advances in Medical Microbiology
Environmental and Microbial Biotechnology,
2021
DOI:10.1007/978-981-15-9916-3_7
|
|
|
[35]
|
Microbial Rejuvenation of Polluted Environment
Microorganisms for Sustainability,
2021
DOI:10.1007/978-981-15-7455-9_13
|
|
|
[36]
|
Antibacterial efficacy of facile cyanobacterial silver nanoparticles inferred by antioxidant mechanism
Materials Science and Engineering: C,
2021
DOI:10.1016/j.msec.2021.111888
|
|
|
[37]
|
Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process
Journal of Genetic Engineering and Biotechnology,
2021
DOI:10.1186/s43141-021-00228-w
|
|
|
[38]
|
Nanotechnology for Advances in Medical Microbiology
Environmental and Microbial Biotechnology,
2021
DOI:10.1007/978-981-15-9916-3_7
|
|
|
[39]
|
Facile biogenic synthesis of silver nanoparticles (AgNPs) by Citrus grandis (L.) Osbeck fruit extract with excellent antimicrobial potential against plant pathogens
SN Applied Sciences,
2020
DOI:10.1007/s42452-020-03529-w
|
|
|
[40]
|
Biofabricated Nanostructures and Their Composites in Regenerative Medicine
ACS Applied Nano Materials,
2020
DOI:10.1021/acsanm.0c01164
|
|
|
[41]
|
Green synthesis and antifungal mechanism of silver nanoparticles derived from chitin‐ induced exometabolites of Trichoderma interfusant
Applied Organometallic Chemistry,
2020
DOI:10.1002/aoc.5407
|
|
|
[42]
|
Biofabricated Nanostructures and Their Composites in Regenerative Medicine
ACS Applied Nano Materials,
2020
DOI:10.1021/acsanm.0c01164
|
|
|
[43]
|
Nanoparticles in Medicine
2020
DOI:10.1007/978-981-13-8954-2_4
|
|
|
[44]
|
Biogenic Silver Nanoparticles Synthesized by Lysinibacillus xylanilyticus MAHUQ-40 to Control Antibiotic-Resistant Human Pathogens Vibrio parahaemolyticus and Salmonella Typhimurium
Frontiers in Bioengineering and Biotechnology,
2020
DOI:10.3389/fbioe.2020.597502
|
|
|
[45]
|
Biological and Environmental Applications of Silver Nanoparticles Synthesized Using the Aqueous Extract of Ginkgo biloba Leaf
Journal of Inorganic and Organometallic Polymers and Materials,
2020
DOI:10.1007/s10904-019-01313-x
|
|
|
[46]
|
Green synthesis and antifungal mechanism of silver nanoparticles derived from chitin‐ induced exometabolites of
Trichoderma
interfusant
Applied Organometallic Chemistry,
2020
DOI:10.1002/aoc.5407
|
|
|
[47]
|
Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa
Heliyon,
2020
DOI:10.1016/j.heliyon.2020.e03943
|
|
|
[48]
|
A Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles
Molecules,
2020
DOI:10.3390/molecules25143191
|
|
|
[49]
|
Comparison of biogenic silver nanoparticles formed by Momordica charantia and Psidium guajava leaf extract and antifungal evaluation
PLOS ONE,
2020
DOI:10.1371/journal.pone.0239360
|
|
|
[50]
|
Silver Nanoparticles: Mechanism of Action and Probable Bio-Application
Journal of Functional Biomaterials,
2020
DOI:10.3390/jfb11040084
|
|
|
[51]
|
Characterization and DNA methylation modulatory activity of gold nanoparticles synthesized by Pseudoalteromonas strain
Journal of Biosciences,
2019
DOI:10.1007/s12038-018-9842-6
|
|
|
[52]
|
Controllable and extra-fast synthesis of bio-applicable silver nanoparticles with Lycium Barbarum L. aqueous extract and visible light
Materials Technology,
2019
DOI:10.1080/10667857.2019.1603656
|
|
|
[53]
|
Bioreduction mechanism of silver nanoparticles
Materials Science and Engineering: C,
2019
DOI:10.1016/j.msec.2019.110299
|
|
|
[54]
|
Microbial Nanobionics
Nanotechnology in the Life Sciences,
2019
DOI:10.1007/978-3-030-16383-9_3
|
|
|
[55]
|
Simplistic approach in extracellular synthesis of silver nanoparticles via bioreducing potential of
Planococcus plakortidis
strain BGCC‐51 isolated from dye industry effluent soil
IET Nanobiotechnology,
2018
DOI:10.1049/iet-nbt.2017.0251
|
|
|
[56]
|
Ultrasound-assisted extraction of antimicrobial compounds from Thymus daenensis and Silybum marianum: Antimicrobial activity with and without the presence of natural silver nanoparticles
Ultrasonics Sonochemistry,
2018
DOI:10.1016/j.ultsonch.2017.11.001
|
|
|
[57]
|
Microbial recovery of metallic nanoparticles from industrial wastes and their environmental applications
Journal of Chemical Technology & Biotechnology,
2018
DOI:10.1002/jctb.5681
|
|
|
[58]
|
Green Adsorbents for Pollutant Removal
Environmental Chemistry for a Sustainable World,
2018
DOI:10.1007/978-3-319-92111-2_10
|
|
|
[59]
|
Prospecting the interactions of nanoparticles with beneficial microorganisms for developing green technologies for agriculture
Environmental Nanotechnology, Monitoring & Management,
2018
DOI:10.1016/j.enmm.2018.09.004
|
|
|
[60]
|
Microbial recovery of metallic nanoparticles from industrial wastes and their environmental applications
Journal of Chemical Technology & Biotechnology,
2018
DOI:10.1002/jctb.5681
|
|
|
[61]
|
Diversity of Bacterial Synthesis of Silver Nanoparticles
BioNanoScience,
2018
DOI:10.1007/s12668-017-0496-x
|
|
|
[62]
|
Ultrasound-assisted extraction of antimicrobial compounds from Thymus daenensis and Silybum marianum: Antimicrobial activity with and without the presence of natural silver nanoparticles
Ultrasonics Sonochemistry,
2018
DOI:10.1016/j.ultsonch.2017.11.001
|
|
|
[63]
|
Spectral characterisation of the silver nanoparticles biosynthesised using Ambrosia maritima plant
Micro & Nano Letters,
2016
DOI:10.1049/mnl.2015.0572
|
|
|
[64]
|
Effect of culture medium on the extracellular synthesis of silver nanoparticles using Klebsiella pneumoniae , Escherichia coli and Pseudomonas jessinii
Biocatalysis and Agricultural Biotechnology,
2016
DOI:10.1016/j.bcab.2016.02.012
|
|
|
[65]
|
Antibacterial mechanism of biogenic silver nanoparticles ofLactobacillus acidophilus
Journal of Experimental Nanoscience,
2015
DOI:10.1080/17458080.2014.985750
|
|
|
[66]
|
Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles
Parasitology Research,
2015
DOI:10.1007/s00436-014-4268-z
|
|
|
[67]
|
Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications
Applied Microbiology and Biotechnology,
2015
DOI:10.1007/s00253-015-6622-1
|
|
|
[68]
|
Bio-Nanoparticles
2015
DOI:10.1002/9781118677629.ch3
|
|
|
[69]
|
In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model
Colloids and Surfaces B: Biointerfaces,
2013
DOI:10.1016/j.colsurfb.2013.02.041
|
|
|
[70]
|
Green Synthesis of Silver Nanoparticles, Their Characterization, Application and Antibacterial Activity
International Journal of Environmental Research and Public Health,
2013
DOI:10.3390/ijerph10105221
|
|
|
[71]
|
Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress
Journal of Nanobiotechnology,
2011
DOI:10.1186/1477-3155-9-49
|
|
|