[1]
|
Analysis and interpretation of Malaria disease model in crisp and fuzzy environment
Results in Control and Optimization,
2023
DOI:10.1016/j.rico.2023.100257
|
|
|
[2]
|
Analysis and interpretation of Malaria disease model in crisp and fuzzy environment
Results in Control and Optimization,
2023
DOI:10.1016/j.rico.2023.100257
|
|
|
[3]
|
Prediction of an epidemic spread based on the adaptive genetic algorithm
Frontiers in Physics,
2023
DOI:10.3389/fphy.2023.1195087
|
|
|
[4]
|
Proceedings of the Future Technologies Conference (FTC) 2021, Volume 2
Lecture Notes in Networks and Systems,
2022
DOI:10.1007/978-3-030-89880-9_55
|
|
|
[5]
|
Characterizing the COVID‐19 dynamics with a new epidemic model: Susceptible‐exposed‐asymptomatic‐symptomatic‐active‐removed
Canadian Journal of Statistics,
2022
DOI:10.1002/cjs.11698
|
|
|
[6]
|
Vector-borne diseases with nonstationary vector populations: The case of growing and decaying populations
Physical Review E,
2022
DOI:10.1103/PhysRevE.106.054402
|
|
|
[7]
|
An epidemic model to address the spread of plant pests. The case of Xylella fastidiosa in almond trees
Kybernetes,
2021
DOI:10.1108/K-05-2020-0320
|
|
|
[8]
|
Women in Industrial and Systems Engineering
Women in Engineering and Science,
2020
DOI:10.1007/978-3-030-11866-2_17
|
|
|
[9]
|
Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory
Springer Proceedings in Mathematics & Statistics,
2020
DOI:10.1007/978-981-15-1157-8_18
|
|
|
[10]
|
Onchocerciasis dynamics: modelling the effects of treatment, education and vector control
Journal of Biological Dynamics,
2020
DOI:10.1080/17513758.2020.1745306
|
|
|
[11]
|
Stochastic Epidemic Dynamics based on the association between susceptible and recovered individuals
International Journal of Biomathematics,
2020
DOI:10.1142/S1793524520500850
|
|
|
[12]
|
A discrete proposal for modelling the infectious diseases expansion
2020 XLVI Latin American Computing Conference (CLEI),
2020
DOI:10.1109/CLEI52000.2020.00047
|
|
|
[13]
|
Empirical study of dynamics of amoebiasis transmission in mobile ad hoc networks (MANETs)
International Journal of Communication Systems,
2020
DOI:10.1002/dac.4186
|
|
|
[14]
|
A vector-borne contamination model to assess food-borne outbreak intervention strategies
Applied Mathematical Modelling,
2019
DOI:10.1016/j.apm.2018.09.017
|
|
|
[15]
|
Geospatial Analysis of Public Health
2019
DOI:10.1007/978-3-030-01680-7_1
|
|
|
[16]
|
Geospatial Analysis of Public Health
2019
DOI:10.1007/978-3-030-01680-7_6
|
|
|
[17]
|
Mathematical Modeling for Hospitalization due to Temperature Variations
International Journal of Mathematical, Engineering and Management Sciences,
2019
DOI:10.33889/IJMEMS.2019.4.2-029
|
|
|
[18]
|
Observer-based adaptive PI sliding mode control of developed uncertain SEIAR influenza epidemic model considering dynamic population
Journal of Theoretical Biology,
2019
DOI:10.1016/j.jtbi.2019.08.015
|
|
|
[19]
|
Empirical study of dynamics of amoebiasis transmission in mobile ad hoc networks (MANETs)
International Journal of Communication Systems,
2019
DOI:10.1002/dac.4186
|
|
|
[20]
|
A vector-borne contamination model to assess food-borne outbreak intervention strategies
Applied Mathematical Modelling,
2019
DOI:10.1016/j.apm.2018.09.017
|
|
|
[21]
|
Modeling Chagas disease in Chile: From vector to congenital transmission
Biosystems,
2017
DOI:10.1016/j.biosystems.2017.04.004
|
|
|
[22]
|
Progression dynamics of Zika fever outbreak in El Salvador during 2015–2016: a mathematical modeling approach
Future Virology,
2017
DOI:10.2217/fvl-2017-0119
|
|
|
[23]
|
Disaster Communications in a Changing Media World
2014
DOI:10.1016/B978-0-12-407868-0.00003-3
|
|
|