[1]
|
Preparation and application of nano TiO2 filmcoated recycled low-iron crushed glass in a novel packed-bed photocatalytic reactor for efficient removal of biodegradable contaminants
Environmental Technology & Innovation,
2024
DOI:10.1016/j.eti.2024.103541
|
|
|
[2]
|
Application of nanotechnology and proteomic tools in crop development towards sustainable agriculture
Journal of Crop Science and Biotechnology,
2024
DOI:10.1007/s12892-024-00235-6
|
|
|
[3]
|
Antimicrobial Biomaterials for Chronic Wound Care
Pharmaceutics,
2023
DOI:10.3390/pharmaceutics15061606
|
|
|
[4]
|
Food-grade titanium dioxide can affect microbiota physiology, adhesion capability, and interbacterial interactions: A study on L. rhamnosus and E. faecium
Food and Chemical Toxicology,
2023
DOI:10.1016/j.fct.2023.113760
|
|
|
[5]
|
Preparation and Application of Active Bionanocomposite Films Based on Sago Starch Reinforced with a Combination of TiO2 Nanoparticles and Penganum harmala Extract for Preserving Chicken Fillets
Polymers,
2023
DOI:10.3390/polym15132889
|
|
|
[6]
|
Applications of Multifunctional Nanomaterials
2023
DOI:10.1016/B978-0-12-820557-0.00008-4
|
|
|
[7]
|
Recent Trends and The Future of Antimicrobial Agents - Part 2
2023
DOI:10.2174/9789815123975123010010
|
|
|
[8]
|
Antimicrobial Activity of Nanoparticles
2023
DOI:10.1016/B978-0-12-821637-8.00008-0
|
|
|
[9]
|
Nanotechnology Applications for Food Safety and Quality Monitoring
2023
DOI:10.1016/B978-0-323-85791-8.00008-2
|
|
|
[10]
|
Soluble soybean polysaccharide/
TiO
2
nanocomposites: Biological activity, release behavior, biodegradability, and biosafety
Journal of Food Safety,
2023
DOI:10.1111/jfs.13024
|
|
|
[11]
|
The innate resistome of “recalcitrant” Acinetobacter baumannii and the role of nanoparticles in combating these MDR pathogens
Applied Nanoscience,
2023
DOI:10.1007/s13204-021-01877-6
|
|
|
[12]
|
Hybrid Nanosystems of Antibiotics with Metal Nanoparticles—Novel Antibacterial Agents
Molecules,
2023
DOI:10.3390/molecules28041603
|
|
|
[13]
|
Evaluation of the inhibitory effects of TiO2 nanoparticle and Ganoderma lucidum extract against biofilm-producing bacteria isolated from clinical samples
Archives of Microbiology,
2023
DOI:10.1007/s00203-023-03403-4
|
|
|
[14]
|
Synergistic Action between Copper Oxide (CuO) Nanoparticles and Anthraquinone-2-Carboxylic Acid (AQ) against Staphylococcus aureus
Journal of Composites Science,
2023
DOI:10.3390/jcs7040135
|
|
|
[15]
|
Elimination of pathogenic multidrug resistant isolates through different metal oxide nanoparticles synthesized from organic plant and microbial sources
Microbial Pathogenesis,
2023
DOI:10.1016/j.micpath.2023.106055
|
|
|
[16]
|
Natural bioactive formulations for biodegradable cotton eco-fabrics with antimicrobial and fire-shielding properties
International Journal of Biological Macromolecules,
2023
DOI:10.1016/j.ijbiomac.2023.124143
|
|
|
[17]
|
Antimicrobial Nanosystems
2023
DOI:10.1016/B978-0-323-91156-6.00009-9
|
|
|
[18]
|
Applications of Multifunctional Nanomaterials
2023
DOI:10.1016/B978-0-12-820557-0.00008-4
|
|
|
[19]
|
Food-grade titanium dioxide can affect microbiota physiology, adhesion capability, and interbacterial interactions: A study on L. rhamnosus and E. faecium
Food and Chemical Toxicology,
2023
DOI:10.1016/j.fct.2023.113760
|
|
|
[20]
|
Synthesis and characterization of eco-friendly TiO2 nanoparticle from combine extract of onion and garlic peel
Journal of King Saud University - Science,
2023
DOI:10.1016/j.jksus.2023.102918
|
|
|
[21]
|
Nanoparticles and Their Antibacterial Application in Endodontics
Antibiotics,
2023
DOI:10.3390/antibiotics12121690
|
|
|
[22]
|
Hierarchical enhanced surface area structures and their associated applications with Titania
Applied Materials Today,
2023
DOI:10.1016/j.apmt.2023.101962
|
|
|
[23]
|
Antimicrobial Nanosystems
2023
DOI:10.1016/B978-0-323-91156-6.00009-9
|
|
|
[24]
|
Influence of biosynthesized magnesium oxide nanoparticles on growth and physiological aspects of cowpea (Vigna unguiculata L.) plant, cowpea beetle, and cytotoxicity
Biotechnology Journal,
2023
DOI:10.1002/biot.202300301
|
|
|
[25]
|
Nanoparticle therapy for antibiotic-resistant bacteria: current methods and prospects
Bioinspired, Biomimetic and Nanobiomaterials,
2023
DOI:10.1680/jbibn.22.00056
|
|
|
[26]
|
Metal nanoparticles as inhibitors of enzymes and toxins of multidrug-resistant Staphylococcus aureus
Infectious Medicine,
2023
DOI:10.1016/j.imj.2023.11.006
|
|
|
[27]
|
Natural bioactive formulations for biodegradable cotton eco-fabrics with antimicrobial and fire-shielding properties
International Journal of Biological Macromolecules,
2023
DOI:10.1016/j.ijbiomac.2023.124143
|
|
|
[28]
|
UV-Induced Antibacterial Activity of Green-Synthesized TiO2 Nanoparticles for the Potential Reuse of Raw Surface and Underground Water
Journal of Plant Growth Regulation,
2022
DOI:10.1007/s00344-021-10391-6
|
|
|
[29]
|
Strategies and progresses for enhancing targeted antibiotic delivery
Advanced Drug Delivery Reviews,
2022
DOI:10.1016/j.addr.2022.114502
|
|
|
[30]
|
Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis
Nanotechnology Reviews,
2022
DOI:10.1515/ntrev-2022-0059
|
|
|
[31]
|
Optimizing Graphene Oxide Encapsulated TiO2 and Hydroxyapatite; Structure and Biological Response
Journal of Inorganic and Organometallic Polymers and Materials,
2022
DOI:10.1007/s10904-021-02193-w
|
|
|
[32]
|
Antibacterial nanomaterials: Upcoming hope to overcome antibiotic resistance crisis
Nanotechnology Reviews,
2022
DOI:10.1515/ntrev-2022-0059
|
|
|
[33]
|
Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects
Journal of Functional Biomaterials,
2022
DOI:10.3390/jfb13040274
|
|
|
[34]
|
Nanobionics: From plant empowering to the infectious disease treatment
Journal of Controlled Release,
2022
DOI:10.1016/j.jconrel.2022.07.028
|
|
|
[35]
|
Strategies and progresses for enhancing targeted antibiotic delivery
Advanced Drug Delivery Reviews,
2022
DOI:10.1016/j.addr.2022.114502
|
|
|
[36]
|
Medical and Dental Applications of Titania Nanoparticles: An Overview
Nanomaterials,
2022
DOI:10.3390/nano12203670
|
|
|
[37]
|
Nanobionics: From plant empowering to the infectious disease treatment
Journal of Controlled Release,
2022
DOI:10.1016/j.jconrel.2022.07.028
|
|
|
[38]
|
Sustainable Global Resources Of Seaweeds Volume 1
2022
DOI:10.1007/978-3-030-91955-9_30
|
|
|
[39]
|
Nanoparticle Impact on the Bacterial Adaptation: Focus on Nano-Titania
Nanomaterials,
2022
DOI:10.3390/nano12203616
|
|
|
[40]
|
Preparation of cadmium oxide nanoparticles by green synthesis method for against gram-positive and gram-negative bacterial strains
PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH IN PURE AND APPLIED SCIENCE (ICARPAS2021): Third Annual Conference of Al-Muthanna University/College of Science,
2022
DOI:10.1063/5.0094140
|
|
|
[41]
|
The role of bacterial corrosion on recolonization of titanium implant surfaces: An in vitro study
Clinical Implant Dentistry and Related Research,
2022
DOI:10.1111/cid.13114
|
|
|
[42]
|
Soluble soybean polysaccharide/
TiO
2
nanocomposites: Biological activity, release behavior, biodegradability, and biosafety
Journal of Food Safety,
2022
DOI:10.1111/jfs.13024
|
|
|
[43]
|
Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance
Antibiotics,
2022
DOI:10.3390/antibiotics11060794
|
|
|
[44]
|
Treatment of antibiotic-resistant bacteria by nanoparticles: Current approaches and prospects
Annals of Advances in Chemistry,
2022
DOI:10.29328/journal.aac.1001025
|
|
|
[45]
|
Protective Textiles from Natural Resources
2022
DOI:10.1016/B978-0-323-90477-3.00017-1
|
|
|
[46]
|
Nanotheranostics for Treatment and Diagnosis of Infectious Diseases
2022
DOI:10.1016/B978-0-323-91201-3.00009-8
|
|
|
[47]
|
Poly(3,4‐ethylenedioxythiophene):Poly(styrene sulfonate) in antibacterial, tissue engineering and biosensors applications: Progress, challenges and perspectives
Journal of Applied Polymer Science,
2022
DOI:10.1002/app.52663
|
|
|
[48]
|
Nosocomial Infections and Role of Nanotechnology
Bioengineering,
2022
DOI:10.3390/bioengineering9020051
|
|
|
[49]
|
Exploring Titanium(IV) Complexes as Potential Antimicrobial Compounds
Antibiotics,
2022
DOI:10.3390/antibiotics11020158
|
|
|
[50]
|
Preparation of molecularly imprinted Ag-TiO2 for photocatalytic removal of ethyl paraben
Environmental Science and Pollution Research,
2022
DOI:10.1007/s11356-021-16168-4
|
|
|
[51]
|
Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems
Pharmaceutics,
2022
DOI:10.3390/pharmaceutics14030586
|
|
|
[52]
|
Optimizing Graphene Oxide Encapsulated TiO2 and Hydroxyapatite; Structure and Biological Response
Journal of Inorganic and Organometallic Polymers and Materials,
2022
DOI:10.1007/s10904-021-02193-w
|
|
|
[53]
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA)
Pharmaceutics,
2022
DOI:10.3390/pharmaceutics14040805
|
|
|
[54]
|
UV-Induced Antibacterial Activity of Green-Synthesized TiO2 Nanoparticles for the Potential Reuse of Raw Surface and Underground Water
Journal of Plant Growth Regulation,
2022
DOI:10.1007/s00344-021-10391-6
|
|
|
[55]
|
An Insight in to Various Metallic Oxide Nanoparticles as Antimicrobials and Their Applications in Dentistry
Journal of Evolution of Medical and Dental Sciences,
2021
DOI:10.14260/jemds/2021/572
|
|
|
[56]
|
Titania Nanotubes Decorated with Cu(I) and Cu(II) Oxides: Antibacterial and Ethylene Scavenging Functions To Extend the Shelf Life of Bananas
ACS Sustainable Chemistry & Engineering,
2021
DOI:10.1021/acssuschemeng.1c01348
|
|
|
[57]
|
Metal and Metal Oxide Nanoparticle as a Novel Antibiotic Carrier for the Direct Delivery of Antibiotics
International Journal of Molecular Sciences,
2021
DOI:10.3390/ijms22179596
|
|
|
[58]
|
Nano-enabled strategies to combat methicillin-resistant Staphylococcus aureus
Materials Science and Engineering: C,
2021
DOI:10.1016/j.msec.2021.112384
|
|
|
[59]
|
Study the effect of antibacterial on the chemically prepared copper oxide
Materials Today: Proceedings,
2021
DOI:10.1016/j.matpr.2021.04.554
|
|
|
[60]
|
Studying the Effectiveness of Anise Extract and Alignite Nanoparticles on the Balance of the Microbial Gut Flora and Some Immunological Parameters in the Laboratory Guinea Pigs
IOP Conference Series: Earth and Environmental Science,
2021
DOI:10.1088/1755-1315/904/1/012020
|
|
|
[61]
|
Properties and Biomedical Applications of Hydrothermal method Synthesized of Vanadium Oxide nanoparticles
Journal of Physics: Conference Series,
2021
DOI:10.1088/1742-6596/1963/1/012043
|
|
|
[62]
|
Nanomaterials as drug delivery systems with antibacterial properties: current trends and future priorities
Expert Review of Anti-infective Therapy,
2021
DOI:10.1080/14787210.2021.1908125
|
|
|
[63]
|
Highlights Regarding the Use of Metallic Nanoparticles against Pathogens Considered a Priority by the World Health Organization
Current Medicinal Chemistry,
2021
DOI:10.2174/0929867327666200513080719
|
|
|
[64]
|
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
2021
DOI:10.1007/978-3-030-11155-7_3-1
|
|
|
[65]
|
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
2021
DOI:10.1007/978-3-030-11155-7_3-1
|
|
|
[66]
|
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
2021
DOI:10.1007/978-3-030-36268-3_3
|
|
|
[67]
|
Nano-enabled strategies to combat methicillin-resistant Staphylococcus aureus
Materials Science and Engineering: C,
2021
DOI:10.1016/j.msec.2021.112384
|
|
|
[68]
|
Biocompatible fabrication of TiO2 nanoparticles: Antimicrobial, anticoagulant, antiplatelet, direct hemolytic and cytotoxicity properties
Inorganic Chemistry Communications,
2021
DOI:10.1016/j.inoche.2021.108505
|
|
|
[69]
|
Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications
Food Hydrocolloids,
2021
DOI:10.1016/j.foodhyd.2020.106314
|
|
|
[70]
|
Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture
2021
DOI:10.1016/B978-0-12-820092-6.00016-1
|
|
|
[71]
|
Copper-fixed quat: a hybrid nanoparticle for application as a locally systemic pesticide (LSP) to manage bacterial spot disease of tomato
Nanoscale Advances,
2021
DOI:10.1039/D0NA00917B
|
|
|
[72]
|
Biocompatible fabrication of TiO2 nanoparticles: Antimicrobial, anticoagulant, antiplatelet, direct hemolytic and cytotoxicity properties
Inorganic Chemistry Communications,
2021
DOI:10.1016/j.inoche.2021.108505
|
|
|
[73]
|
Cracking the Challenge of Antimicrobial Drug Resistance with CRISPR/Cas9, Nanotechnology and Other Strategies in ESKAPE Pathogens
Microorganisms,
2021
DOI:10.3390/microorganisms9050954
|
|
|
[74]
|
Interactive Effects of Biosynthesized Nanocomposites and Their Antimicrobial and Cytotoxic Potentials
Nanomaterials,
2021
DOI:10.3390/nano11040903
|
|
|
[75]
|
Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications
Frontiers in Chemistry,
2021
DOI:10.3389/fchem.2021.613343
|
|
|
[76]
|
Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects
World Journal of Microbiology and Biotechnology,
2021
DOI:10.1007/s11274-021-03070-x
|
|
|
[77]
|
The innate resistome of “recalcitrant” Acinetobacter baumannii and the role of nanoparticles in combating these MDR pathogens
Applied Nanoscience,
2021
DOI:10.1007/s13204-021-01877-6
|
|
|
[78]
|
Effects of Magnesium Oxide and Magnesium Hydroxide Microparticle Foliar Treatment on Tomato PR Gene Expression and Leaf Microbiome
Microorganisms,
2021
DOI:10.3390/microorganisms9061217
|
|
|
[79]
|
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
2021
DOI:10.1007/978-3-030-36268-3_3
|
|
|
[80]
|
Plant‐mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens
Journal of the Science of Food and Agriculture,
2021
DOI:10.1002/jsfa.10767
|
|
|
[81]
|
Titania Nanotubes Decorated with Cu(I) and Cu(II) Oxides: Antibacterial and Ethylene Scavenging Functions To Extend the Shelf Life of Bananas
ACS Sustainable Chemistry & Engineering,
2021
DOI:10.1021/acssuschemeng.1c01348
|
|
|
[82]
|
Nanoparticulate Antibiotic Systems as Antibacterial Agents and Antibiotic Delivery Platforms to Fight Infections
Journal of Nanomaterials,
2020
DOI:10.1155/2020/6905631
|
|
|
[83]
|
Plant‐mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens
Journal of the Science of Food and Agriculture,
2020
DOI:10.1002/jsfa.10767
|
|
|
[84]
|
Eco-synthesis and characterization of titanium nanoparticles: Testing its cytotoxicity and antibacterial effects
Green Processing and Synthesis,
2020
DOI:10.1515/gps-2020-0045
|
|
|
[85]
|
Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance
Drug Discovery Today,
2020
DOI:10.1016/j.drudis.2020.10.011
|
|
|
[86]
|
Antibiotics in Food Chain: The Consequences for Antibiotic Resistance
Antibiotics,
2020
DOI:10.3390/antibiotics9100688
|
|
|
[87]
|
Green Methods for Wastewater Treatment
Environmental Chemistry for a Sustainable World,
2020
DOI:10.1007/978-3-030-16427-0_8
|
|
|
[88]
|
Layer-by-layer immobilizing of polydopamine-assisted ε-polylysine and gum Arabic on titanium: Tailoring of antibacterial and osteogenic properties
Materials Science and Engineering: C,
2020
DOI:10.1016/j.msec.2020.110690
|
|
|
[89]
|
In situ synthesis of nanosized TiO2 in polypropylene solution for the production of films with antibacterial activity
Materials Chemistry and Physics,
2020
DOI:10.1016/j.matchemphys.2020.122824
|
|
|
[90]
|
Antibacterial potential of biomaterial derived nanoparticles for drug delivery application
Materials Research Express,
2020
DOI:10.1088/2053-1591/ab715d
|
|
|
[91]
|
Novel Antibacterial Strategies for Combating Bacterial Multidrug Resistance
Current Pharmaceutical Design,
2020
DOI:10.2174/1381612825666191022163237
|
|
|
[92]
|
Model Organisms to Study Biological Activities and Toxicity of Nanoparticles
2020
DOI:10.1007/978-981-15-1702-0_3
|
|
|
[93]
|
Study of antimicrobial and DNA cleavage property of biocompatible silver nanoparticles prepared by using Ficus carica L.
Materials Research Innovations,
2020
DOI:10.1080/14328917.2020.1753335
|
|
|
[94]
|
Nanostructures for Antimicrobial and Antibiofilm Applications
Nanotechnology in the Life Sciences,
2020
DOI:10.1007/978-3-030-40337-9_4
|
|
|
[95]
|
Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review
Frontiers in Chemistry,
2020
DOI:10.3389/fchem.2020.00341
|
|
|
[96]
|
Comparative Study of Antibacterial Effects of Titanium Dioxide Nanoparticles Alone and in Combination with Antibiotics on MDR Pseudomonas aeruginosa Strains
International Journal of Nanomedicine,
2020
DOI:10.2147/IJN.S246310
|
|
|
[97]
|
Prooxidant and antimicrobic effects of iron and titanium oxide nanoparticles and thalicarpine
Archives of Microbiology,
2020
DOI:10.1007/s00203-020-01902-2
|
|
|
[98]
|
Biomedical Applications of TiO2 Nanostructures: Recent Advances
International Journal of Nanomedicine,
2020
DOI:10.2147/IJN.S249441
|
|
|
[99]
|
Antibiotic Materials in Healthcare
2020
DOI:10.1016/B978-0-12-820054-4.00015-X
|
|
|
[100]
|
Emerging trends in pectin extraction and its anti-microbial functionalization using natural bioactives for application in food packaging
Trends in Food Science & Technology,
2020
DOI:10.1016/j.tifs.2020.09.009
|
|
|
[101]
|
Nanoparticle technology and its implications in endodontics: a review
Biomaterials Research,
2020
DOI:10.1186/s40824-020-00198-z
|
|
|
[102]
|
Enhancing the Antibacterial Activity of Erythromycin with Titanium Dioxide Nanoparticles against MRSA
Current Pharmaceutical Biotechnology,
2020
DOI:10.2174/1389201021666200128124142
|
|
|
[103]
|
Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens
International Journal of Pharmaceutics,
2020
DOI:10.1016/j.ijpharm.2020.119531
|
|
|
[104]
|
Characterization and antibacterial of Gold Nanoparticles Prepared by Electrolysis method
Journal of Physics: Conference Series,
2020
DOI:10.1088/1742-6596/1660/1/012045
|
|
|
[105]
|
Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato
Scientific Reports,
2019
DOI:10.1038/s41598-019-54717-7
|
|
|
[106]
|
Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato
Scientific Reports,
2019
DOI:10.1038/s41598-019-54717-7
|
|
|
[107]
|
Integrated nanotechnology of synergism-sterilization and removing-residues for neomycin through nano-Cu2O
Colloids and Surfaces B: Biointerfaces,
2019
DOI:10.1016/j.colsurfb.2019.110371
|
|
|
[108]
|
Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria
Beilstein Journal of Nanotechnology,
2019
DOI:10.3762/bjnano.10.167
|
|
|
[109]
|
Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations
Microorganisms,
2019
DOI:10.3390/microorganisms7090356
|
|
|
[110]
|
Anti–Methicillin-Resistant Staphylococcus aureus Nanoantibiotics
Frontiers in Pharmacology,
2019
DOI:10.3389/fphar.2019.01121
|
|
|
[111]
|
Antibiotic Resistant Bacteria: A Challenge to Modern Medicine
2019
DOI:10.1007/978-981-13-9879-7_10
|
|
|
[112]
|
Materials for Biomedical Engineering
2019
DOI:10.1016/B978-0-12-818435-6.00014-1
|
|
|
[113]
|
Antibacterial Drug Discovery to Combat MDR
2019
DOI:10.1007/978-981-13-9871-1_25
|
|
|
[114]
|
Antibacterial Drug Discovery to Combat MDR
2019
DOI:10.1007/978-981-13-9871-1_19
|
|
|
[115]
|
Nanotechnology for Agriculture: Crop Production & Protection
2019
DOI:10.1007/978-981-32-9374-8_11
|
|
|
[116]
|
Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato
Scientific Reports,
2019
DOI:10.1038/s41598-019-54717-7
|
|
|
[117]
|
Environment-friendly green composites based on soluble soybean polysaccharide: A review
International Journal of Biological Macromolecules,
2019
DOI:10.1016/j.ijbiomac.2018.10.110
|
|
|
[118]
|
Facile Synthesis of TiO2 Nanoparticles of Different Crystalline Phases and Evaluation of Their Antibacterial Effect Under Dark Conditions Against E. coli
Journal of Cluster Science,
2019
DOI:10.1007/s10876-019-01500-3
|
|
|
[119]
|
The fight against multidrug-resistant organisms: The role of ZnO crystalline defects
Materials Science and Engineering: C,
2019
DOI:10.1016/j.msec.2019.02.004
|
|
|
[120]
|
Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance
International Journal of Molecular Sciences,
2019
DOI:10.3390/ijms20102468
|
|
|
[121]
|
A proposed mechanism of action of textile/Al2O3–TiO2 bimetal oxide nanocomposite as an antimicrobial agent
The Journal of The Textile Institute,
2018
DOI:10.1080/00405000.2018.1526445
|
|
|
[122]
|
Synthesis and applications of nano-TiO2: a review
Environmental Science and Pollution Research,
2018
DOI:10.1007/s11356-018-3884-z
|
|
|
[123]
|
Antimicrobial Magnesium Hydroxide Nanoparticles As an Alternative to Cu Biocide for Crop Protection
Journal of Agricultural and Food Chemistry,
2018
DOI:10.1021/acs.jafc.8b01727
|
|
|
[124]
|
Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance
Pharmaceutics,
2018
DOI:10.3390/pharmaceutics10010011
|
|
|
[125]
|
Soluble soybean polysaccharide/TiO 2 bionanocomposite film for food application
Carbohydrate Polymers,
2018
DOI:10.1016/j.carbpol.2017.12.081
|
|
|
[126]
|
Antimicrobial Double-Layer Coating Prepared from Pure or Doped-Titanium Dioxide and Binders
Coatings,
2018
DOI:10.3390/coatings8010041
|
|
|
[127]
|
Characterization of soluble soybean (SSPS) polysaccharide and development of eco-friendly SSPS/TiO 2 nanoparticle bionanocomposites
International Journal of Biological Macromolecules,
2018
DOI:10.1016/j.ijbiomac.2018.01.182
|
|
|
[128]
|
Bioorganic Phase in Natural Food: An Overview
2018
DOI:10.1007/978-3-319-74210-6_15
|
|
|
[129]
|
Antibacterial Activity Of ternary semiconductor compounds AgInSe2 Nanoparticles Synthesized by Simple Chemical Method
Journal of Physics: Conference Series,
2018
DOI:10.1088/1742-6596/1003/1/012121
|
|
|
[130]
|
Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces
Advanced Healthcare Materials,
2018
DOI:10.1002/adhm.201800103
|
|
|
[131]
|
Fracture resistant, antibiofilm adherent, self-assembled PMMA/ZnO nanoformulations for biomedical applications: physico-chemical and biological perspectives of nano reinforcement
Nanotechnology,
2018
DOI:10.1088/1361-6528/aac296
|
|
|
[132]
|
Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”
Frontiers in Microbiology,
2018
DOI:10.3389/fmicb.2018.01441
|
|
|
[133]
|
Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses
Microbial Pathogenesis,
2018
DOI:10.1016/j.micpath.2018.08.008
|
|
|
[134]
|
Nanobiotechnology Applications in Plant Protection
Nanotechnology in the Life Sciences,
2018
DOI:10.1007/978-3-319-91161-8_4
|
|
|
[135]
|
Metal Oxide based Antibacterial Membrane
IOP Conference Series: Materials Science and Engineering,
2018
DOI:10.1088/1757-899X/395/1/012021
|
|
|
[136]
|
Antimicrobial Magnesium Hydroxide Nanoparticles As an Alternative to Cu Biocide for Crop Protection
Journal of Agricultural and Food Chemistry,
2018
DOI:10.1021/acs.jafc.8b01727
|
|
|
[137]
|
Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces
Advanced Healthcare Materials,
2018
DOI:10.1002/adhm.201800103
|
|
|
[138]
|
Nanotechnology Applied To Pharmaceutical Technology
2017
DOI:10.1007/978-3-319-70299-5_4
|
|
|
[139]
|
Low-temperature particle synthesis of titania/silica/natural rubber composites for antibacterial properties
Advanced Powder Technology,
2017
DOI:10.1016/j.apt.2017.02.014
|
|
|
[140]
|
Effect of a pulsed electric field on the synthesis of TiO2 and its photocatalytic performance under visible light irradiation
Powder Technology,
2017
DOI:10.1016/j.powtec.2016.11.053
|
|
|
[141]
|
Nano- and Microscale Drug Delivery Systems
2017
DOI:10.1016/B978-0-323-52727-9.00009-1
|
|
|
[142]
|
Green chemical approach towards the synthesis of CeO 2 doped with seashell and its bacterial applications intermediated with fruit extracts
Journal of Photochemistry and Photobiology B: Biology,
2017
DOI:10.1016/j.jphotobiol.2017.05.032
|
|
|
[143]
|
The Influence of Temperature on the Formation of Cubic Structured CdO Nanoparticles and Their Thin Films from Bis(2-hydroxy-1-naphthaldehydato)cadmium(II) Complex via Thermal Decomposition Technique
Journal of Nanotechnology,
2017
DOI:10.1155/2017/8317109
|
|
|
[144]
|
Colloid particle formulations for antimicrobial applications
Advances in Colloid and Interface Science,
2017
DOI:10.1016/j.cis.2017.05.012
|
|
|
[145]
|
Cellulose–Polyvinyl Alcohol–Nano-TiO2 Hybrid Nanocomposite: Thermal, Optical, and Antimicrobial Properties against Pathogenic Bacteria
Polymer-Plastics Technology and Engineering,
2017
DOI:10.1080/03602559.2017.1344851
|
|
|
[146]
|
Antimicrobial Nanoarchitectonics
2017
DOI:10.1016/B978-0-323-52733-0.00015-X
|
|
|
[147]
|
Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance
International Journal of Pharmaceutics,
2017
DOI:10.1016/j.ijpharm.2017.08.127
|
|
|
[148]
|
Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles
Polymers,
2017
DOI:10.3390/polym9120636
|
|
|
[149]
|
Impact of tetracycline on the toxic effects of titanium dioxide (TiO 2 ) nanoparticles towards the freshwater algal species, Scenedesmus obliquus
Aquatic Toxicology,
2017
DOI:10.1016/j.aquatox.2017.10.023
|
|
|
[150]
|
Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them
Microbial Pathogenesis,
2016
DOI:10.1016/j.micpath.2016.02.009
|
|
|
[151]
|
Nanobiomaterials in Antimicrobial Therapy
2016
DOI:10.1016/B978-0-323-42864-4.00008-7
|
|
|
[152]
|
Nanobiomaterials in Antimicrobial Therapy
2016
DOI:10.1016/B978-0-323-42864-4.00014-2
|
|
|
[153]
|
Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens
Colloids and Surfaces B: Biointerfaces,
2016
DOI:10.1016/j.colsurfb.2016.09.042
|
|
|
[154]
|
Effect of Ti +4 on in vitro bioactivity and antibacterial activity of silicate glass-ceramics
Materials Science and Engineering: C,
2016
DOI:10.1016/j.msec.2016.08.022
|
|
|
[155]
|
Antibiotic Resistance
2016
DOI:10.1016/B978-0-12-803642-6.00006-X
|
|
|
[156]
|
Cosmetic Nanomaterials in Wastewater: Titanium Dioxide and Fullerenes
Journal of Hazardous, Toxic, and Radioactive Waste,
2016
DOI:10.1061/(ASCE)HZ.2153-5515.0000261
|
|
|
[157]
|
Photocatalytic degradation of a textile dye Reactive Red 31 using phyto-synthesized titanium nanoparticles under solar irradiation
Desalination and Water Treatment,
2015
DOI:10.1080/19443994.2014.968216
|
|
|
[158]
|
Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus
Applied Nanoscience,
2015
DOI:10.1007/s13204-014-0301-x
|
|
|
[159]
|
Antimicrobial activity of the metals and metal oxide nanoparticles
Materials Science and Engineering: C,
2014
DOI:10.1016/j.msec.2014.08.031
|
|
|
[160]
|
Investigation of structural, dielectric, magnetic and antibacterial activity of Cu–Cd–Ni–FeO4 nanoparticles
Journal of Magnetism and Magnetic Materials,
2013
DOI:10.1016/j.jmmm.2013.04.024
|
|
|
[161]
|
Can biowarfare agents be defeated with light?
Virulence,
2013
DOI:10.4161/viru.26475
|
|
|
[162]
|
Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis
Applied Microbiology and Biotechnology,
2012
DOI:10.1007/s00253-012-4153-6
|
|
|
[163]
|
Ecotoxicity Studies of Photoactive Nanoparticles Exposed to Ultraviolet Light
Journal of Korean Society of Environmental Engineers,
2012
DOI:10.4491/KSEE.2012.34.1.063
|
|
|
[164]
|
Plant essential oils and their constituents in coping with multidrug-resistant bacteria
Expert Review of Anti-infective Therapy,
2012
DOI:10.1586/eri.12.57
|
|
|
[165]
|
Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents
Expert Review of Anti-infective Therapy,
2011
DOI:10.1586/eri.11.121
|
|
|
[166]
|
Influence of Co-Cr Particles and Co-Cr Ions on the Growth of Staphylococcal Biofilms
The International Journal of Artificial Organs,
2011
DOI:10.5301/ijao.5000031
|
|
|