[1]
|
Deciphering the Role of Phytohormones and Osmolytes in Plant Tolerance Against Salt Stress: Implications, Possible Cross-Talk, and Prospects
Journal of Plant Growth Regulation,
2024
DOI:10.1007/s00344-023-11070-4
|
|
|
[2]
|
Changes in Physiological Traits, Gene Expression and Phytochemical Profile of Mentha piperita in Response to Elicitor
Biochemical Genetics,
2024
DOI:10.1007/s10528-024-10805-6
|
|
|
[3]
|
Changes in Physiological Traits, Gene Expression and Phytochemical Profile of Mentha piperita in Response to Elicitor
Biochemical Genetics,
2024
DOI:10.1007/s10528-024-10805-6
|
|
|
[4]
|
Exogenous application of jasmonates and brassinosteroids alleviates lead toxicity in bamboo by altering biochemical and physiological attributes
Environmental Science and Pollution Research,
2023
DOI:10.1007/s11356-023-31549-7
|
|
|
[5]
|
Phosphate starvation enhances Xanthomonas oryzae pv. oryzae resistance in rice
Biologia plantarum,
2023
DOI:10.32615/bp.2023.013
|
|
|
[6]
|
Microbial Inoculants
2023
DOI:10.1016/B978-0-323-99043-1.00016-5
|
|
|
[7]
|
The Multifaceted Role of Jasmonic Acid in Plant Stress Mitigation: An Overview
Plants,
2023
DOI:10.3390/plants12233982
|
|
|
[8]
|
Germination indices and morphological properties of Catharanthus roseus Seedlings affected by hormone-priming technique under polyethylene glycol drought stress
Journal of Seed Research,
2023
DOI:10.61186/yujs.10.1.175
|
|
|
[9]
|
Transcriptomic, osmoregulatory and translocation changes modulates Ni toxicity in Theobroma cacao
Plant Physiology and Biochemistry,
2023
DOI:10.1016/j.plaphy.2023.01.053
|
|
|
[10]
|
Nitrate Reductase is Needed for Methyl Jasmonate-Mediated Arsenic Toxicity Tolerance of Rice by Modulating the Antioxidant Defense System, Glyoxalase System and Arsenic Sequestration Mechanism
Journal of Plant Growth Regulation,
2023
DOI:10.1007/s00344-022-10616-2
|
|
|
[11]
|
Phenylpropanoid biosynthetic gene expression in cell suspension culture of Haplophyllum virgatum Spach. under chitin treatment
In Vitro Cellular & Developmental Biology - Plant,
2023
DOI:10.1007/s11627-023-10327-7
|
|
|
[12]
|
Transcriptomic, osmoregulatory and translocation changes modulates Ni toxicity in Theobroma cacao
Plant Physiology and Biochemistry,
2023
DOI:10.1016/j.plaphy.2023.01.053
|
|
|
[13]
|
Salicylic Acid and Methyl Jasmonate Synergistically Ameliorate Salinity Induced Damage by Maintaining Redox Balance and Stomatal Movement in Potato
Journal of Plant Growth Regulation,
2023
DOI:10.1007/s00344-023-10956-7
|
|
|
[14]
|
Appraisal of Functions and Role of Selenium in Heavy Metal Stress Adaptation in Plants
Agriculture,
2023
DOI:10.3390/agriculture13051083
|
|
|
[15]
|
Microbial Inoculants
2023
DOI:10.1016/B978-0-323-99043-1.00016-5
|
|
|
[16]
|
Deciphering the Role of Phytohormones and Osmolytes in Plant Tolerance Against Salt Stress: Implications, Possible Cross-Talk, and Prospects
Journal of Plant Growth Regulation,
2023
DOI:10.1007/s00344-023-11070-4
|
|
|
[17]
|
Salicylic Acid and Methyl Jasmonate Synergistically Ameliorate Salinity Induced Damage by Maintaining Redox Balance and Stomatal Movement in Potato
Journal of Plant Growth Regulation,
2023
DOI:10.1007/s00344-023-10956-7
|
|
|
[18]
|
Effects of SiO2 nanoparticles on root structures, gas exchange, and antioxidant activities of Cunninghamia lanceolata seedlings under drought stress
Journal of Plant Nutrition,
2023
DOI:10.1080/01904167.2023.2211617
|
|
|
[19]
|
Heavy metal (loid)s phytotoxicity in crops and its mitigation through seed priming technology
International Journal of Phytoremediation,
2023
DOI:10.1080/15226514.2022.2068502
|
|
|
[20]
|
Plant Stress Mitigators
2023
DOI:10.1016/B978-0-323-89871-3.00013-6
|
|
|
[21]
|
UV-B Radiation and Crop Growth
Plant Life and Environment Dynamics,
2022
DOI:10.1007/978-981-19-3620-3_8
|
|
|
[22]
|
Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation
Science of The Total Environment,
2022
DOI:10.1016/j.scitotenv.2021.151099
|
|
|
[23]
|
Methyl Jasmonate Alleviates the Deleterious Effects of Salinity Stress by Augmenting Antioxidant Enzyme Activity and Ion Homeostasis in Rice (Oryza sativa L.)
Agronomy,
2022
DOI:10.3390/agronomy12102343
|
|
|
[24]
|
Effect of copper stress on Phaseolus coccineus in the presence of exogenous methyl jasmonate and/or Serratia plymuthica from the Spitsbergen soil
Journal of Hazardous Materials,
2022
DOI:10.1016/j.jhazmat.2022.129232
|
|
|
[25]
|
Physiological Responses of Bread Wheat (Triticum aestivum) Cultivars to Drought Stress and Exogenous Methyl Jasmonate
Journal of Plant Growth Regulation,
2022
DOI:10.1007/s00344-021-10525-w
|
|
|
[26]
|
Augmenting Crop Productivity in Stress Environment
2022
DOI:10.1007/978-981-16-6361-1_17
|
|
|
[27]
|
Heavy metal (loid)s phytotoxicity in crops and its mitigation through seed priming technology
International Journal of Phytoremediation,
2022
DOI:10.1080/15226514.2022.2068502
|
|
|
[28]
|
Hazardous and Trace Materials in Soil and Plants
2022
DOI:10.1016/B978-0-323-91632-5.00024-0
|
|
|
[29]
|
Hazardous and Trace Materials in Soil and Plants
2022
DOI:10.1016/B978-0-323-91632-5.00001-X
|
|
|
[30]
|
Arsenic in Plants
2022
DOI:10.1002/9781119791461.ch11
|
|
|
[31]
|
RNA-seq and phytohormone analysis reveals the culm color variation of Bambusa oldhamii Munro
PeerJ,
2022
DOI:10.7717/peerj.12796
|
|
|
[32]
|
Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation
Science of The Total Environment,
2022
DOI:10.1016/j.scitotenv.2021.151099
|
|
|
[33]
|
Effect of Jasmonic Acid Foliar Spray on the Morpho-Physiological Mechanism of Salt Stress Tolerance in Two Soybean Varieties (Glycine max L.)
Plants,
2022
DOI:10.3390/plants11050651
|
|
|
[34]
|
Nitrate Reductase is Needed for Methyl Jasmonate-Mediated Arsenic Toxicity Tolerance of Rice by Modulating the Antioxidant Defense System, Glyoxalase System and Arsenic Sequestration Mechanism
Journal of Plant Growth Regulation,
2022
DOI:10.1007/s00344-022-10616-2
|
|
|
[35]
|
Photosynthetic functions in plants subjected to stresses are positively influenced by priming
Plant Stress,
2022
DOI:10.1016/j.stress.2022.100079
|
|
|
[36]
|
Effect of copper stress on Phaseolus coccineus in the presence of exogenous methyl jasmonate and/or Serratia plymuthica from the Spitsbergen soil
Journal of Hazardous Materials,
2022
DOI:10.1016/j.jhazmat.2022.129232
|
|
|
[37]
|
Physiological Responses of Bread Wheat (Triticum aestivum) Cultivars to Drought Stress and Exogenous Methyl Jasmonate
Journal of Plant Growth Regulation,
2022
DOI:10.1007/s00344-021-10525-w
|
|
|
[38]
|
Effect of copper stress on Phaseolus coccineus in the presence of exogenous methyl jasmonate and/or Serratia plymuthica from the Spitsbergen soil
Journal of Hazardous Materials,
2022
DOI:10.1016/j.jhazmat.2022.129232
|
|
|
[39]
|
Effect of Jasmonic Acid Foliar Spray on the Morpho-Physiological Mechanism of Salt Stress Tolerance in Two Soybean Varieties (Glycine max L.)
Plants,
2022
DOI:10.3390/plants11050651
|
|
|
[40]
|
Methyl Jasmonate Alleviates the Deleterious Effects of Salinity Stress by Augmenting Antioxidant Enzyme Activity and Ion Homeostasis in Rice (Oryza sativa L.)
Agronomy,
2022
DOI:10.3390/agronomy12102343
|
|
|
[41]
|
Moderate Mn accumulation enhances growth and alters leaf hormone contents in the hyperaccumulator Celosia argentea Linn.
Environmental and Experimental Botany,
2021
DOI:10.1016/j.envexpbot.2021.104603
|
|
|
[42]
|
Jasmonate Signaling and Plant Adaptation to Abiotic Stressors (Review)
Applied Biochemistry and Microbiology,
2021
DOI:10.1134/S0003683821010117
|
|
|
[43]
|
Plant Growth Regulators
2021
DOI:10.1007/978-3-030-61153-8_8
|
|
|
[44]
|
Plant Performance Under Environmental Stress
2021
DOI:10.1007/978-3-030-78521-5_4
|
|
|
[45]
|
Compatible Solutes Engineering for Crop Plants Facing Climate Change
2021
DOI:10.1007/978-3-030-80674-3_9
|
|
|
[46]
|
Jasmonates and Salicylates Signaling in Plants
Signaling and Communication in Plants,
2021
DOI:10.1007/978-3-030-75805-9_1
|
|
|
[47]
|
Responses of Phragmites australis to copper stress: A combined analysis of plant morphology, physiology and proteomics
Plant Biology,
2021
DOI:10.1111/plb.13175
|
|
|
[48]
|
Different carbon sources and their concentrations change alkaloid production and gene expression in Catharanthus roseus shoots in vitro
Functional Plant Biology,
2021
DOI:10.1071/FP19254
|
|
|
[49]
|
Jasmonate Signaling and Plant Adaptation to Abiotic Stressors (Review)
Applied Biochemistry and Microbiology,
2021
DOI:10.1134/S0003683821010117
|
|
|
[50]
|
Lead Toxicity in Cereals: Mechanistic Insight Into Toxicity, Mode of Action, and Management
Frontiers in Plant Science,
2021
DOI:10.3389/fpls.2020.587785
|
|
|
[51]
|
Enhancement of freezing tolerance of olive leaves by foliar application of methyl jasmonate and 24–epibrassinolide through changes in some metabolites and antioxidant activity
Scientia Horticulturae,
2021
DOI:10.1016/j.scienta.2021.110127
|
|
|
[52]
|
Plant Growth Regulators
2021
DOI:10.1007/978-3-030-61153-8_8
|
|
|
[53]
|
Jasmonates and Salicylates Signaling in Plants
Signaling and Communication in Plants,
2021
DOI:10.1007/978-3-030-75805-9_1
|
|
|
[54]
|
Role of Jasmonates, Calcium, and Glutathione in Plants to Combat Abiotic Stresses Through Precise Signaling Cascade
Frontiers in Plant Science,
2021
DOI:10.3389/fpls.2021.668029
|
|
|
[55]
|
Jasmonates and Salicylates Signaling in Plants
Signaling and Communication in Plants,
2021
DOI:10.1007/978-3-030-75805-9_8
|
|
|
[56]
|
Plant Performance Under Environmental Stress
2021
DOI:10.1007/978-3-030-78521-5_4
|
|
|
[57]
|
Moderate Mn accumulation enhances growth and alters leaf hormone contents in the hyperaccumulator Celosia argentea Linn.
Environmental and Experimental Botany,
2021
DOI:10.1016/j.envexpbot.2021.104603
|
|
|
[58]
|
Compatible Solutes Engineering for Crop Plants Facing Climate Change
2021
DOI:10.1007/978-3-030-80674-3_9
|
|
|
[59]
|
Enhancement of freezing tolerance of olive leaves by foliar application of methyl jasmonate and 24–epibrassinolide through changes in some metabolites and antioxidant activity
Scientia Horticulturae,
2021
DOI:10.1016/j.scienta.2021.110127
|
|
|
[60]
|
Jasmonic acid and methyl jasmonate modulate growth, photosynthetic activity and expression of photosystem II subunit genes in Brassica oleracea L
Scientific Reports,
2020
DOI:10.1038/s41598-020-65309-1
|
|
|
[61]
|
Methyl jasmonate improves metabolism and growth of NaCl-stressed Glycyrrhiza uralensis seedlings
Scientia Horticulturae,
2020
DOI:10.1016/j.scienta.2020.109287
|
|
|
[62]
|
The Plant Family Fabaceae
2020
DOI:10.1007/978-981-15-4752-2_7
|
|
|
[63]
|
Foliage applications of jasmonic acid modulate the antioxidant defense under water deficit growth in sugar beet
Spanish Journal of Agricultural Research,
2020
DOI:10.5424/sjar/2019174-15380
|
|
|
[64]
|
Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants
International Journal of Molecular Sciences,
2020
DOI:10.3390/ijms21020621
|
|
|
[65]
|
Minimizing Adverse Effects of Pb on Maize Plants by Combined Treatment with Jasmonic, Salicylic Acids and Proline
Agronomy,
2020
DOI:10.3390/agronomy10050699
|
|
|
[66]
|
Methyl jasmonate alleviates arsenic toxicity in rice
Plant Cell Reports,
2020
DOI:10.1007/s00299-020-02547-7
|
|
|
[67]
|
Exogenous jasmonic acid enhances oxidative protection of Lemna valdiviana subjected to arsenic
Acta Physiologiae Plantarum,
2020
DOI:10.1007/s11738-020-03086-0
|
|
|
[68]
|
Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II
2020
DOI:10.1007/978-981-15-2172-0_11
|
|
|
[69]
|
Jasmonic acid and methyl jasmonate modulate growth, photosynthetic activity and expression of photosystem II subunit genes in Brassica oleracea L
Scientific Reports,
2020
DOI:10.1038/s41598-020-65309-1
|
|
|
[70]
|
Biochemical responses of water-stressed triticale (X Triticosecale wittmack) to humic acid and jasmonic acid
Journal of Plant Nutrition,
2020
DOI:10.1080/01904167.2020.1806312
|
|
|
[71]
|
Cellular and Molecular Phytotoxicity of Heavy Metals
Nanotechnology in the Life Sciences,
2020
DOI:10.1007/978-3-030-45975-8_14
|
|
|
[72]
|
Responses of
Phragmites australis
to copper stress: A combined analysis of plant morphology, physiology and proteomics
Plant Biology,
2020
DOI:10.1111/plb.13175
|
|
|
[73]
|
Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants
International Journal of Molecular Sciences,
2020
DOI:10.3390/ijms21020621
|
|
|
[74]
|
Minimizing Adverse Effects of Pb on Maize Plants by Combined Treatment with Jasmonic, Salicylic Acids and Proline
Agronomy,
2020
DOI:10.3390/agronomy10050699
|
|
|
[75]
|
Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress
Biomolecules,
2019
DOI:10.3390/biom9070285
|
|
|
[76]
|
Chromium-induced alkaloid production in Catharanthus roseus (L.) G.Don in vitro cultured shoots and related gene expression patterns particularly for the novel gene GS
Acta agriculturae Slovenica,
2019
DOI:10.14720/aas.2019.113.1.09
|
|
|
[77]
|
Physiological and Biochemical Characteristics of Cinnamomum camphora in Response to Cu- and Cd-Contaminated Soil
Water, Air, & Soil Pollution,
2019
DOI:10.1007/s11270-018-4048-y
|
|
|
[78]
|
The roles of methyl jasmonate to stress in plants
Functional Plant Biology,
2019
DOI:10.1071/FP18106
|
|
|
[79]
|
Die Anästhesiologie
Springer Reference Medizin,
2019
DOI:10.1007/978-3-319-95315-1_9
|
|
|
[80]
|
Plant Abiotic Stress Tolerance
2019
DOI:10.1007/978-3-030-06118-0_10
|
|
|
[81]
|
Alkaloids production and antioxidant properties in Catharanthus roseus (L.) G. Don. shoots and study of alkaloid biosynthesis-related gene expression levels in response to methyl jasmonate and putrescine treatments as eco-friendly elicitors
Biologia Futura,
2019
DOI:10.1556/019.70.2019.05
|
|
|
[82]
|
Jasmonates: Mechanisms and functions in abiotic stress tolerance of plants
Biocatalysis and Agricultural Biotechnology,
2019
DOI:10.1016/j.bcab.2019.101210
|
|
|
[83]
|
Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress
Biomolecules,
2019
DOI:10.3390/biom9070285
|
|
|
[84]
|
Uptake of pharmaceuticals acts as an abiotic stress and triggers variation of jasmonates in Malabar spinach (Basella alba. L)
Chemosphere,
2019
DOI:10.1016/j.chemosphere.2019.124711
|
|
|
[85]
|
Plant response to jasmonates: current developments and their role in changing environment
Bulletin of the National Research Centre,
2019
DOI:10.1186/s42269-019-0195-6
|
|
|
[86]
|
Priming and Pretreatment of Seeds and Seedlings
2019
DOI:10.1007/978-981-13-8625-1_4
|
|
|
[87]
|
Plant hormones under heavy metals stress
Vìsnik Harkìvsʹkogo nacìonalʹnogo agrarnogo unìversitetu. Serìâ Bìologiâ,
2019
DOI:10.35550/vbio2019.03.006
|
|
|
[88]
|
Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants
2019
DOI:10.1007/978-3-030-27423-8_12
|
|
|
[89]
|
Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters
Environmental and Experimental Botany,
2018
DOI:10.1016/j.envexpbot.2017.11.004
|
|
|
[90]
|
Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress
South African Journal of Botany,
2018
DOI:10.1016/j.sajb.2017.11.018
|
|
|
[91]
|
Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate–glutathione cycle in oilseed rape roots
Plant Growth Regulation,
2018
DOI:10.1007/s10725-017-0327-7
|
|
|
[92]
|
Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxylase system in maize seedlings
Scientific Reports,
2018
DOI:10.1038/s41598-018-21097-3
|
|
|
[93]
|
Interactions between plant hormones and thiol-related heavy metal chelators
Plant Growth Regulation,
2018
DOI:10.1007/s10725-018-0391-7
|
|
|
[94]
|
Physiological and iTRAQ-Based Quantitative Proteomics Analysis of Methyl Jasmonate-Induced Tolerance in Brassica napus
Under Arsenic Stress
PROTEOMICS,
2018
DOI:10.1002/pmic.201700290
|
|
|
[95]
|
Jasmonic Acid Improves Growth Performance of Soybean Under Nickel Toxicity By Regulating Nickel Uptake, Redox Balance, and Oxidative Stress Metabolism
Journal of Plant Growth Regulation,
2018
DOI:10.1007/s00344-018-9814-y
|
|
|
[96]
|
Advances in Seed Priming
2018
DOI:10.1007/978-981-13-0032-5_6
|
|
|
[97]
|
Methyl Jasmonate and Nitrogen Interact to Alleviate Cadmium Stress in Mentha arvensis by Regulating Physio-Biochemical Damages and ROS Detoxification
Journal of Plant Growth Regulation,
2018
DOI:10.1007/s00344-018-9854-3
|
|
|
[98]
|
OsWRKY28 Regulates Phosphate and Arsenate Accumulation, Root System Architecture and Fertility in Rice
Frontiers in Plant Science,
2018
DOI:10.3389/fpls.2018.01330
|
|
|
[99]
|
Plants Under Metal and Metalloid Stress
2018
DOI:10.1007/978-981-13-2242-6_14
|
|
|
[100]
|
Changes in medicinal alkaloids production and expression of related regulatory and biosynthetic genes in response to silver nitrate combined with methyl jasmonate in Catharanthus roseus in vitro propagated shoots
Plant Physiology and Biochemistry,
2018
DOI:10.1016/j.plaphy.2018.10.015
|
|
|
[101]
|
Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxylase system in maize seedlings
Scientific Reports,
2018
DOI:10.1038/s41598-018-21097-3
|
|
|
[102]
|
Jasmonic acid ameliorates alkaline stress by improving growth performance, ascorbate glutathione cycle and glyoxylase system in maize seedlings
Scientific Reports,
2018
DOI:10.1038/s41598-018-21097-3
|
|
|
[103]
|
Physiological and iTRAQ‐Based Quantitative Proteomics Analysis of Methyl Jasmonate–Induced Tolerance in Brassica napus Under Arsenic Stress
PROTEOMICS,
2018
DOI:10.1002/pmic.201700290
|
|
|
[104]
|
Changes in medicinal alkaloids production and expression of related regulatory and biosynthetic genes in response to silver nitrate combined with methyl jasmonate in Catharanthus roseus in vitro propagated shoots
Plant Physiology and Biochemistry,
2018
DOI:10.1016/j.plaphy.2018.10.015
|
|
|
[105]
|
Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.)
Archives of Agronomy and Soil Science,
2017
DOI:10.1080/03650340.2017.1313406
|
|
|
[106]
|
Consequences of copper treatment on pigeon pea photosynthesis, osmolytes and antioxidants defense
Physiology and Molecular Biology of Plants,
2017
DOI:10.1007/s12298-017-0461-8
|
|
|
[107]
|
28-Homobrassinolide potential for oxidative interface in Brassica juncea under temperature stress
Acta Physiologiae Plantarum,
2017
DOI:10.1007/s11738-017-2524-4
|
|
|
[108]
|
Low doses of exogenous methyl jasmonate applied simultaneously with toxic aluminum improve the antioxidant performance of Vaccinium corymbosum
Plant and Soil,
2017
DOI:10.1007/s11104-016-2985-z
|
|
|
[109]
|
Mechanism of Plant Hormone Signaling under Stress
2017
DOI:10.1002/9781118889022.ch7
|
|
|
[110]
|
Plant Secondary Metabolites, 3 Volume Set
2016
DOI:10.1201/9781315207506-21
|
|
|
[111]
|
Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency
Biotechnology Advances,
2016
DOI:10.1016/j.biotechadv.2016.07.003
|
|
|
[112]
|
Plant Secondary Metabolites
2016
DOI:10.1201/9781315366302-2
|
|
|
[113]
|
Does methyl jasmonate modify the oxidative stress response in Phaseolus coccineus treated with Cu?
Ecotoxicology and Environmental Safety,
2016
DOI:10.1016/j.ecoenv.2015.11.024
|
|
|
[114]
|
Methyl jasmonate improves salinity resistance in German chamomile (Matricaria chamomilla L.) by increasing activity of antioxidant enzymes
Acta Physiologiae Plantarum,
2016
DOI:10.1007/s11738-015-2023-4
|
|
|
[115]
|
Genome-wide characterization and expression profiling of TIFY gene family in pigeonpea (Cajanus cajan (L.) Millsp.) under copper stress
Journal of Plant Biochemistry and Biotechnology,
2016
DOI:10.1007/s13562-015-0342-6
|
|
|
[116]
|
Methyl Jasmonate Regulates Antioxidant Defense and Suppresses Arsenic Uptake in Brassica napus L.
Frontiers in Plant Science,
2016
DOI:10.3389/fpls.2016.00468
|
|
|
[117]
|
Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity
Frontiers in Plant Science,
2016
DOI:10.3389/fpls.2016.00591
|
|
|
[118]
|
Minimising toxicity of cadmium in plants—role of plant growth regulators
Protoplasma,
2015
DOI:10.1007/s00709-014-0710-4
|
|
|
[119]
|
Jasmonate-induced tolerance of Hassawi okra seedlings to salinity in brackish water
Acta Physiologiae Plantarum,
2015
DOI:10.1007/s11738-015-1828-5
|
|
|
[120]
|
Jasmonates counter plant stress: A Review
Environmental and Experimental Botany,
2015
DOI:10.1016/j.envexpbot.2015.02.010
|
|
|
[121]
|
Foliar application of methyl jasmonate induced physio-hormonal changes in Pisum sativum under diverse temperature regimes
Plant Physiology and Biochemistry,
2015
DOI:10.1016/j.plaphy.2015.08.020
|
|
|
[122]
|
Legumes under Environmental Stress
2015
DOI:10.1002/9781118917091.ch11
|
|
|