[1]
|
Improved National‐Scale Above‐Normal Flow Prediction for Gauged and Ungauged Basins Using a Spatio‐Temporal Hierarchical Model
Water Resources Research,
2024
DOI:10.1029/2023WR034557
|
|
|
[2]
|
Quantitative forecasting of bed sediment load in river engineering: an investigation into machine learning methodologies for complex phenomena
Water Supply,
2024
DOI:10.2166/ws.2024.017
|
|
|
[3]
|
Improved National‐Scale Above‐Normal Flow Prediction for Gauged and Ungauged Basins Using a Spatio‐Temporal Hierarchical Model
Water Resources Research,
2024
DOI:10.1029/2023WR034557
|
|
|
[4]
|
Deep Neural Network to Classify Seabed Sediment Using MBES Multifrequency
IOP Conference Series: Earth and Environmental Science,
2023
DOI:10.1088/1755-1315/1276/1/012058
|
|
|
[5]
|
Prediction of the Amount of Sediment Deposition in Tarbela Reservoir Using Machine Learning Approaches
Water,
2022
DOI:10.3390/w14193098
|
|
|
[6]
|
Sediment-yield prediction using map correlation method
Materials Today: Proceedings,
2022
DOI:10.1016/j.matpr.2022.03.504
|
|
|
[7]
|
Optimized Scenario for Estimating Suspended Sediment Yield Using an Artificial Neural Network Coupled with a Genetic Algorithm
Water,
2022
DOI:10.3390/w14182815
|
|
|
[8]
|
Joint frequency analysis of river flow rate and suspended sediment load using conditional density of copula functions
Acta Geophysica,
2022
DOI:10.1007/s11600-022-00894-5
|
|
|
[9]
|
Prediction of the Amount of Sediment Deposition in Tarbela Reservoir Using Machine Learning Approaches
Water,
2022
DOI:10.3390/w14193098
|
|
|
[10]
|
Joint frequency analysis of river flow rate and suspended sediment load using conditional density of copula functions
Acta Geophysica,
2022
DOI:10.1007/s11600-022-00894-5
|
|
|
[11]
|
A regional ANN-based model to estimate suspended sediment concentrations in ungauged heterogeneous basins
Hydrological Sciences Journal,
2021
DOI:10.1080/02626667.2021.1918695
|
|
|
[12]
|
Sediment deposition and distribution modelling in reservoirs: current trends and prospects
Proceedings of the Institution of Civil Engineers - Water Management,
2020
DOI:10.1680/jwama.19.00055
|
|
|
[13]
|
Multi-objective genetic algorithm optimization of artificial neural network for estimating suspended sediment yield in Mahanadi River basin, India
International Journal of River Basin Management,
2020
DOI:10.1080/15715124.2019.1705317
|
|
|
[14]
|
Prediction of bed load sediments using different artificial neural network models
Frontiers of Structural and Civil Engineering,
2020
DOI:10.1007/s11709-019-0600-0
|
|
|
[15]
|
Suspended sediment yield modeling in Mahanadi River, India by multi-objective optimization hybridizing artificial intelligence algorithms
International Journal of Sediment Research,
2020
DOI:10.1016/j.ijsrc.2020.03.018
|
|
|
[16]
|
Sediment transport modelling in an alluvial river with artificial neural network
Journal of Hydrology,
2020
DOI:10.1016/j.jhydrol.2020.125056
|
|
|
[17]
|
Computational Intelligence in Sensor Networks
Studies in Computational Intelligence,
2019
DOI:10.1007/978-3-662-57277-1_20
|
|
|
[18]
|
Wavelet-Exponential Smoothing: a New Hybrid Method for Suspended Sediment Load Modeling
Environmental Processes,
2019
DOI:10.1007/s40710-019-00363-0
|
|
|
[19]
|
The Use of Sediment Rating Curve under its Limitations to Estimate the Suspended Load
Reviews in Agricultural Science,
2019
DOI:10.7831/ras.7.0_88
|
|
|
[20]
|
Simulating soil loss rate in Ekbatan Dam watershed using experimental and statistical approaches
International Journal of Sediment Research,
2018
DOI:10.1016/j.ijsrc.2018.10.013
|
|
|
[21]
|
A regional suspended load yield estimation model for ungauged watersheds
Water Science and Engineering,
2018
DOI:10.1016/j.wse.2018.09.008
|
|
|
[22]
|
The application of artificial neural networks to the problem of reservoir classification and land use determination on the basis of water sediment composition
Ecological Indicators,
2017
DOI:10.1016/j.ecolind.2016.09.012
|
|
|
[23]
|
The application of backpropagation neural network method to estimate the sediment loads
MATEC Web of Conferences,
2017
DOI:10.1051/matecconf/201710105016
|
|
|
[24]
|
The Effectiveness of Intelligent Models in Estimating the River Suspended Sediments (Case Study: Babaaman Basin, Northern Khorasan)
journal of watershed management research,
2017
DOI:10.29252/jwmr.7.14.95
|
|
|
[25]
|
Event Runoff and Sediment-Yield Neural Network Models for Assessment and Design of Management Practices for Small Agricultural Watersheds
Journal of Hydrologic Engineering,
2017
DOI:10.1061/(ASCE)HE.1943-5584.0001457
|
|
|
[26]
|
Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction
Journal of Hydrology,
2016
DOI:10.1016/j.jhydrol.2016.07.048
|
|
|
[27]
|
Development of sediment load estimation models by using artificial neural networking techniques
Environmental Monitoring and Assessment,
2015
DOI:10.1007/s10661-015-4866-y
|
|
|
[28]
|
Integrative neural networks model for prediction of sediment rating curve parameters for ungauged basins
Journal of Hydrology,
2015
DOI:10.1016/j.jhydrol.2015.11.008
|
|
|
[29]
|
Regionalization of sediment rating curve for sediment yield prediction in ungauged catchments
Hydrology Research,
2015
DOI:10.2166/nh.2013.090
|
|
|
[30]
|
Comparison of regionalization approaches in parameterizing sediment rating curve in ungauged catchments for subsequent instantaneous sediment yield prediction
Journal of Hydrology,
2014
DOI:10.1016/j.jhydrol.2014.03.003
|
|
|
[31]
|
Modeling of Sediment Yield Prediction Using M5 Model Tree Algorithm and Wavelet Regression
Water Resources Management,
2014
DOI:10.1007/s11269-014-0590-6
|
|
|
[32]
|
Development of a regional model for catchment-scale suspended sediment yield estimation in ungauged rivers of the Lower Mekong Basin
Geoderma,
2014
DOI:10.1016/j.geoderma.2014.07.030
|
|
|
[33]
|
Coupling Singular Spectrum Analysis with Artificial Neural Network to Improve Accuracy of Sediment Load Prediction
Journal of Water Resource and Protection,
2013
DOI:10.4236/jwarp.2013.54039
|
|
|