[1]
|
Digital Human Modeling and Medicine
2023
DOI:10.1016/B978-0-12-823913-1.00003-8
|
|
|
[2]
|
Digital Human Modeling and Medicine
2023
DOI:10.1016/B978-0-12-823913-1.00003-8
|
|
|
[3]
|
Enhanced Piezoelectric Fibered Extracellular Matrix to Promote Cardiomyocyte Maturation and Tissue Formation: A 3D Computational Model
Biology,
2021
DOI:10.3390/biology10020135
|
|
|
[4]
|
Mechanical stimulation of cell microenvironment for cardiac muscle tissue regeneration: a 3D in-silico model
Computational Mechanics,
2020
DOI:10.1007/s00466-020-01882-6
|
|
|
[5]
|
A Computational Model for Cardiomyocytes Mechano-Electric Stimulation to Enhance Cardiac Tissue Regeneration
Mathematics,
2020
DOI:10.3390/math8111875
|
|
|
[6]
|
Stretchable Piezoelectric Substrate Providing Pulsatile Mechanoelectric Cues for Cardiomyogenic Differentiation of Mesenchymal Stem Cells
ACS Applied Materials & Interfaces,
2017
DOI:10.1021/acsami.7b03050
|
|
|
[7]
|
Stretchable Piezoelectric Substrate Providing Pulsatile Mechanoelectric Cues for Cardiomyogenic Differentiation of Mesenchymal Stem Cells
ACS Applied Materials & Interfaces,
2017
DOI:10.1021/acsami.7b03050
|
|
|
[8]
|
Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells using a combination of basic fibroblast growth factor and hydrocortisone
Cell Biology International,
2016
DOI:10.1002/cbin.10536
|
|
|
[9]
|
Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells using a combination of basic fibroblast growth factor and hydrocortisone
Cell Biology International,
2016
DOI:10.1002/cbin.10536
|
|
|