[1]
|
Acetobacteraceae as exopolysaccharide producers: Current state of knowledge and further perspectives
Frontiers in Bioengineering and Biotechnology,
2023
DOI:10.3389/fbioe.2023.1166618
|
|
|
[2]
|
Colonization of Brachypodium distachyon by Gluconacetobacter diazotrophicus and its effect on plant growth promotion
Canadian Journal of Plant Science,
2022
DOI:10.1139/cjps-2020-0143
|
|
|
[3]
|
Systematic optimization of exopolysaccharide production by Gluconacetobacter sp. and use of (crude) glycerol as carbon source
Carbohydrate Polymers,
2022
DOI:10.1016/j.carbpol.2021.118769
|
|
|
[4]
|
Optically transparent and stretchable pure bacterial nanocellulose
Journal of Polymer Research,
2022
DOI:10.1007/s10965-022-03213-0
|
|
|
[5]
|
Diversity of endophytic bacterial and fungal microbiota associated with the medicinal lichen Usnea longissima at high altitudes
Frontiers in Microbiology,
2022
DOI:10.3389/fmicb.2022.958917
|
|
|
[6]
|
The production and application of bacterial exopolysaccharides as biomaterials for bone regeneration
Carbohydrate Polymers,
2022
DOI:10.1016/j.carbpol.2022.119550
|
|
|
[7]
|
Systematic optimization of exopolysaccharide production by Gluconacetobacter sp. and use of (crude) glycerol as carbon source
Carbohydrate Polymers,
2022
DOI:10.1016/j.carbpol.2021.118769
|
|
|
[8]
|
The production and application of bacterial exopolysaccharides as biomaterials for bone regeneration
Carbohydrate Polymers,
2022
DOI:10.1016/j.carbpol.2022.119550
|
|
|
[9]
|
A review of culture media for bacterial cellulose production: complex, chemically defined and minimal media modulations
Cellulose,
2021
DOI:10.1007/s10570-021-03754-5
|
|
|
[10]
|
Acetan and Acetan-Like Polysaccharides: Genetics, Biosynthesis, Structure, and Viscoelasticity
Polymers,
2021
DOI:10.3390/polym13050815
|
|
|
[11]
|
Optimization and Modeling of Curdlan Production under Multi-physiological-parameters Process Control by Agrobacterium radiobacter Mutant A-15 at High Initial Glucose
Biotechnology and Bioprocess Engineering,
2021
DOI:10.1007/s12257-021-0028-y
|
|
|
[12]
|
Antitumor effect of exopolysaccharide produced by Bacillus mycoides
Microbial Pathogenesis,
2020
DOI:10.1016/j.micpath.2019.103947
|
|
|
[13]
|
Comparative genomics of the Komagataeibacter strains—Efficient bionanocellulose producers
MicrobiologyOpen,
2019
DOI:10.1002/mbo3.731
|
|
|
[14]
|
Properties and potential application of efficient biosurfactant produced by Pseudomonas sp. KZ1 strain
Journal of Environmental Science and Health, Part A,
2019
DOI:10.1080/10934529.2018.1530537
|
|
|
[15]
|
Cultural optimization of a new exopolysaccharide producer “ Micrococcus roseus ”
Beni-Suef University Journal of Basic and Applied Sciences,
2018
DOI:10.1016/j.bjbas.2018.07.007
|
|
|
[16]
|
Screening for gum-producing Lactic acid bacteria in Oil palm (Elaeis guineensis
) and raphia palm (Raphia regalis)
sap from South-West Nigeria
Food Science & Nutrition,
2018
DOI:10.1002/fsn3.750
|
|
|
[17]
|
Comparative genomics of the Komagataeibacter
strains-Efficient bionanocellulose producers
MicrobiologyOpen,
2018
DOI:10.1002/mbo3.731
|
|
|
[18]
|
Nanocellulose biosynthesis by Komagataeibacter hansenii in a defined minimal culture medium
Cellulose,
2018
DOI:10.1007/s10570-018-2178-4
|
|
|
[19]
|
Towards a better production of bacterial exopolysaccharides by controlling genetic as well as physico-chemical parameters
Applied Microbiology and Biotechnology,
2018
DOI:10.1007/s00253-018-8745-7
|
|
|
[20]
|
Screening for gum‐producing Lactic acid bacteria in Oil palm (Elaeis guineensis) and raphia palm (Raphia regalis) sap from South‐West Nigeria
Food Science & Nutrition,
2018
DOI:10.1002/fsn3.750
|
|
|
[21]
|
Environmental Sustainability Using Green Technologies
2016
DOI:10.1201/9781315364339-12
|
|
|
[22]
|
Industrial Biotechnology
2016
DOI:10.1201/b19347-2
|
|
|
[23]
|
Effect of Gluconacetobacter spp. on kefir grains and kefir quality
Food Science and Biotechnology,
2015
DOI:10.1007/s10068-015-0015-1
|
|
|
[24]
|
Renewable Resources for Biorefineries
2014
DOI:10.1039/9781782620181-00001
|
|
|
[25]
|
Renewable Resources for Biorefineries
2014
DOI:10.1039/9781782620181-00001
|
|
|