[1]
|
A semi-analytical method of three-dimensional dual-phase-lagging heat conduction model
International Journal of Heat and Mass Transfer,
2024
DOI:10.1016/j.ijheatmasstransfer.2023.124720
|
|
|
[2]
|
A closed‐form solution of DPL bioheat transfer problem with time‐periodic boundary conditions
Heat Transfer,
2024
DOI:10.1002/htj.22947
|
|
|
[3]
|
Heat Conduction Beyond the Fourier Law
Technical Physics,
2021
DOI:10.1134/S1063784221010242
|
|
|
[4]
|
Analysis of Heat Transfer Processes in Electronic Nanostructures Using the Dual-Phase-Lag Model
2021 28th International Conference on Mixed Design of Integrated Circuits and System,
2021
DOI:10.23919/MIXDES52406.2021.9497587
|
|
|
[5]
|
Green's Function Solutions of One- and Two-Dimensional Dual-Phase-Lag Laser Heating Problems in Nano/Microstructures
Journal of Heat Transfer,
2021
DOI:10.1115/1.4051882
|
|
|
[6]
|
Heat Conduction Beyond the Fourier Law
Technical Physics,
2021
DOI:10.1134/S1063784221010242
|
|
|
[7]
|
A Closed Form Solution of Dual-Phase Lag Heat Conduction Problem With Time Periodic Boundary Conditions
Journal of Heat Transfer,
2019
DOI:10.1115/1.4042491
|
|
|
[8]
|
Orthogonal Eigenfunction Expansion Method for One-Dimensional Dual-Phase Lag Heat Conduction Problem With Time-Dependent Boundary Conditions
Journal of Heat Transfer,
2017
DOI:10.1115/1.4037874
|
|
|
[9]
|
Nonhomogeneous Dual-Phase-Lag Heat Conduction Problem: Analytical Solution and Select Case Studies
Journal of Heat Transfer,
2017
DOI:10.1115/1.4037775
|
|
|
[10]
|
Macro- to Nanoscale Heat and Mass Transfer: The Lagging Behavior
International Journal of Thermophysics,
2015
DOI:10.1007/s10765-015-1913-4
|
|
|
[11]
|
Comparison of Green׳s function solutions for different heat conduction models in electronic nanostructures
Microelectronics Journal,
2015
DOI:10.1016/j.mejo.2015.07.008
|
|
|
[12]
|
Green's function solution for dual-phase-lag heat conduction model in electronic nanostructures
2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM),
2015
DOI:10.1109/SEMI-THERM.2015.7100146
|
|
|
[13]
|
Comparison of Green׳s function solutions for different heat conduction models in electronic nanostructures
Microelectronics Journal,
2015
DOI:10.1016/j.mejo.2015.07.008
|
|
|
[14]
|
Green's function solution of hyperbolic heat equation suitable for thermal analysis of electronic nanostructures
20th International Workshop on Thermal Investigations of ICs and Systems,
2014
DOI:10.1109/THERMINIC.2014.6972508
|
|
|
[15]
|
Effect of temperature oscillation on thermal characteristics of an aluminum thin film
Applied Physics A,
2014
DOI:10.1007/s00339-014-8635-5
|
|
|