[1]
|
A 128-ch Area-Efficient Neurochemical-Sensing Front-End for FSCV Recordings of Dopamine
IEEE Sensors Journal,
2024
DOI:10.1109/JSEN.2024.3359892
|
|
|
[2]
|
From FFN Dual Probe Screening to ITO Microdevice for Exocytosis Monitoring: Electrochemical and Fluorescence Requirements**
ChemElectroChem,
2022
DOI:10.1002/celc.202200321
|
|
|
[3]
|
On-Chip Cyclic Voltammetry Measurements Using a Compact 1024-Electrode CMOS IC
Analytical Chemistry,
2021
DOI:10.1021/acs.analchem.1c01132
|
|
|
[4]
|
Advanced real-time recordings of neuronal activity with tailored patch pipettes, diamond multi-electrode arrays and electrochromic voltage-sensitive dyes
Pflügers Archiv - European Journal of Physiology,
2021
DOI:10.1007/s00424-020-02472-4
|
|
|
[5]
|
Quantifying neurotransmitter secretion at single-vesicle resolution using high-density complementary metal–oxide–semiconductor electrode array
Nature Communications,
2021
DOI:10.1038/s41467-020-20267-0
|
|
|
[6]
|
On-Chip Cyclic Voltammetry Measurements Using a Compact 1024-Electrode CMOS IC
Analytical Chemistry,
2021
DOI:10.1021/acs.analchem.1c01132
|
|
|
[7]
|
Quantifying neurotransmitter secretion at single-vesicle resolution using high-density complementary metal–oxide–semiconductor electrode array
Nature Communications,
2021
DOI:10.1038/s41467-020-20267-0
|
|
|
[8]
|
Electrochemistry of Single-Vesicle Events
Annual Review of Analytical Chemistry,
2020
DOI:10.1146/annurev-anchem-061417-010032
|
|
|
[9]
|
Overview and outlook of the strategies devoted to electrofluorescence surveys: Application to single cell secretion analysis
TrAC Trends in Analytical Chemistry,
2020
DOI:10.1016/j.trac.2020.116055
|
|
|
[10]
|
Simultaneous monitoring of action potentials and neurotransmitter release from neuron-like PC12 cells
Analytica Chimica Acta,
2020
DOI:10.1016/j.aca.2019.11.074
|
|
|
[11]
|
Microfabricated electrochemical sensing devices
Lab on a Chip,
2020
DOI:10.1039/C9LC01112A
|
|
|
[12]
|
Overview and outlook of the strategies devoted to electrofluorescence surveys: Application to single cell secretion analysis
TrAC Trends in Analytical Chemistry,
2020
DOI:10.1016/j.trac.2020.116055
|
|
|
[13]
|
FEM-based design of optical transparent indium tin oxide multielectrode arrays for multiparametric, high sensitive cell based assays
Biosensors and Bioelectronics,
2019
DOI:10.1016/j.bios.2018.09.095
|
|
|
[14]
|
Recent development in amperometric measurements of vesicular exocytosis
TrAC Trends in Analytical Chemistry,
2019
DOI:10.1016/j.trac.2019.01.013
|
|
|
[15]
|
A matched-filter algorithm to detect amperometric spikes resulting from quantal secretion
Journal of Neuroscience Methods,
2018
DOI:10.1016/j.jneumeth.2017.10.019
|
|
|
[16]
|
Springer Series on Chemical Sensors and Biosensors,
2018
DOI:10.1007/5346_2018_24
|
|
|
[17]
|
Integrating electrochemical immunosensing and cell adhesion technologies for cancer cell detection and enumeration
Electrochimica Acta,
2018
DOI:10.1016/j.electacta.2018.08.005
|
|
|
[18]
|
Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models
Biosensors and Bioelectronics,
2018
DOI:10.1016/j.bios.2018.09.002
|
|
|
[19]
|
Enhancing the Transparency of Highly Electroactive BNCD-MEAs
physica status solidi (a),
2018
DOI:10.1002/pssa.201800211
|
|
|
[20]
|
Rapid 1024-Pixel Electrochemical Imaging at 10,000 Frames Per Second Using Monolithic CMOS Sensor and Multifunctional Data Acquisition System
IEEE Sensors Journal,
2018
DOI:10.1109/JSEN.2018.2835829
|
|
|
[21]
|
Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells
Analytical Chemistry,
2018
DOI:10.1021/acs.analchem.8b02750
|
|
|
[22]
|
Enhancing the Transparency of Highly Electroactive BNCD‐MEAs
physica status solidi (a),
2018
DOI:10.1002/pssa.201800211
|
|
|
[23]
|
Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells
Analytical Chemistry,
2018
DOI:10.1021/acs.analchem.8b02750
|
|
|
[24]
|
Electrotriggered Confined Self-assembly of Metal–Polyphenol Nanocoatings Using a Morphogenic Approach
Chemistry of Materials,
2017
DOI:10.1021/acs.chemmater.7b03349
|
|
|
[25]
|
Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience
ACS Chemical Neuroscience,
2017
DOI:10.1021/acschemneuro.6b00328
|
|
|
[26]
|
A Dual Functional Electroactive and Fluorescent Probe for Coupled Measurements of Vesicular Exocytosis with High Spatial and Temporal Resolution
Angewandte Chemie International Edition,
2017
DOI:10.1002/anie.201611145
|
|
|
[27]
|
A Dual Functional Electroactive and Fluorescent Probe for Coupled Measurements of Vesicular Exocytosis with High Spatial and Temporal Resolution
Angewandte Chemie,
2017
DOI:10.1002/ange.201611145
|
|
|
[28]
|
Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience
ACS Chemical Neuroscience,
2017
DOI:10.1021/acschemneuro.6b00328
|
|
|
[29]
|
Electrotriggered Confined Self-assembly of Metal–Polyphenol Nanocoatings Using a Morphogenic Approach
Chemistry of Materials,
2017
DOI:10.1021/acs.chemmater.7b03349
|
|
|
[30]
|
A Dual Functional Electroactive and Fluorescent Probe for Coupled Measurements of Vesicular Exocytosis with High Spatial and Temporal Resolution
Angewandte Chemie International Edition,
2017
DOI:10.1002/anie.201611145
|
|
|
[31]
|
A Dual Functional Electroactive and Fluorescent Probe for Coupled Measurements of Vesicular Exocytosis with High Spatial and Temporal Resolution
Angewandte Chemie,
2017
DOI:10.1002/ange.201611145
|
|
|
[32]
|
Vesicle impact electrochemical cytometry compared to amperometric exocytosis measurements
Current Opinion in Electrochemistry,
2017
DOI:10.1016/j.coelec.2017.07.005
|
|
|
[33]
|
Electrochemical measurement of quantal exocytosis using microchips
Pflügers Archiv - European Journal of Physiology,
2017
DOI:10.1007/s00424-017-2063-2
|
|
|
[34]
|
Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements
Pflügers Archiv - European Journal of Physiology,
2017
DOI:10.1007/s00424-017-2067-y
|
|
|
[35]
|
Diamond for neural interfacing: A review
Carbon,
2016
DOI:10.1016/j.carbon.2016.02.059
|
|
|
[36]
|
All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters
Scientific Reports,
2016
DOI:10.1038/srep20682
|
|
|
[37]
|
Robust Functionalization of Large Microelectrode Arrays by Using Pulsed Potentiostatic Deposition
Sensors,
2016
DOI:10.3390/s17010022
|
|
|
[38]
|
Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands
Analytical Chemistry,
2016
DOI:10.1021/acs.analchem.5b04449
|
|
|
[39]
|
Robust Functionalization of Large Microelectrode Arrays by Using Pulsed Potentiostatic Deposition
Sensors,
2016
DOI:10.3390/s17010022
|
|
|
[40]
|
Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands
Analytical Chemistry,
2016
DOI:10.1021/acs.analchem.5b04449
|
|
|
[41]
|
All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters
Scientific Reports,
2016
DOI:10.1038/srep20682
|
|
|
[42]
|
Nanoelectrochemistry
2015
DOI:10.1201/b18066-15
|
|
|
[43]
|
Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,
2015
DOI:10.1016/j.nimb.2014.11.119
|
|
|
[44]
|
Vesicular exocytosis and microdevices – microelectrode arrays
The Analyst,
2015
DOI:10.1039/C4AN01932F
|
|
|
[45]
|
3D printed microfluidic devices with integrated versatile and reusable electrodes
Lab Chip,
2014
DOI:10.1039/C4LC00171K
|
|
|
[46]
|
Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays
The Journal of Physiology,
2014
DOI:10.1113/jphysiol.2014.274951
|
|
|
[47]
|
Recent advances in Electrochemical Detection of Exocytosis
Electrochimica Acta,
2014
DOI:10.1016/j.electacta.2014.02.059
|
|
|
[48]
|
Fully Integrated CMOS Microsystem for Electrochemical Measurements on 32 × 32 Working Electrodes at 90 Frames Per Second
Analytical Chemistry,
2014
DOI:10.1021/ac500862v
|
|
|
[49]
|
Fully Integrated CMOS Microsystem for Electrochemical Measurements on 32 × 32 Working Electrodes at 90 Frames Per Second
Analytical Chemistry,
2014
DOI:10.1021/ac500862v
|
|
|
[50]
|
Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high‐density diamond ultra‐microelectrode arrays
The Journal of Physiology,
2014
DOI:10.1113/jphysiol.2014.274951
|
|
|
[51]
|
Parallel On-Chip Analysis of Single Vesicle Neurotransmitter Release
Analytical Chemistry,
2013
DOI:10.1021/ac4006183
|
|
|
[52]
|
Parallel On-Chip Analysis of Single Vesicle Neurotransmitter Release
Analytical Chemistry,
2013
DOI:10.1021/ac4006183
|
|
|
[53]
|
Parallel recording of neurotransmitters release from chromaffin cells using a 10×10 CMOS IC potentiostat array with on-chip working electrodes
Biosensors and Bioelectronics,
2013
DOI:10.1016/j.bios.2012.09.058
|
|
|
[54]
|
Ultrafast Detection and Quantification of Brain Signaling Molecules with Carbon Fiber Microelectrodes
Analytical Chemistry,
2012
DOI:10.1021/ac301670h
|
|
|
[55]
|
Ultrafast Detection and Quantification of Brain Signaling Molecules with Carbon Fiber Microelectrodes
Analytical Chemistry,
2012
DOI:10.1021/ac301670h
|
|
|