[1]
|
Inverting a k-heptadiagonal matrix based on Doolitle LU factorization
Applied Mathematics-A Journal of Chinese Universities,
2022
DOI:10.1007/s11766-022-3763-8
|
|
|
[2]
|
A finite difference method to analyze heat and mass transfer in kerosene based γ-oxide nanofluid for cooling applications
Physica Scripta,
2021
DOI:10.1088/1402-4896/ac098a
|
|
|
[3]
|
Generalized Sherman–Morrison–Woodbury formula based algorithm for the inverses of opposite-bordered tridiagonal matrices
Journal of Mathematical Chemistry,
2020
DOI:10.1007/s10910-020-01138-x
|
|
|
[4]
|
Advanced Computing in Industrial Mathematics
Studies in Computational Intelligence,
2019
DOI:10.1007/978-3-319-97277-0_33
|
|
|
[5]
|
A breakdown-free algorithm for computing the determinants of periodic tridiagonal matrices
Numerical Algorithms,
2019
DOI:10.1007/s11075-019-00675-0
|
|
|
[6]
|
New algorithms for numerically solving a class of bordered tridiagonal systems of linear equations
Computers & Mathematics with Applications,
2019
DOI:10.1016/j.camwa.2019.02.028
|
|
|
[7]
|
Performance Analysis of Effective Symbolic Methods for Solving Band Matrix SLAEs
EPJ Web of Conferences,
2019
DOI:10.1051/epjconf/201921405004
|
|
|
[8]
|
Stability of a finite volume element method for the time-fractional advection-diffusion equation
Numerical Methods for Partial Differential Equations,
2018
DOI:10.1002/num.22243
|
|
|
[9]
|
Effective Methods for Solving Band SLEs after Parabolic Nonlinear PDEs
EPJ Web of Conferences,
2018
DOI:10.1051/epjconf/201817707004
|
|
|
[10]
|
A Cost-Efficient Numerical Algorithm for Evaluating the Determinant of a Quasi-Tridiagonal Matrix
2018 5th International Conference on Systems and Informatics (ICSAI),
2018
DOI:10.1109/ICSAI.2018.8599353
|
|
|
[11]
|
Stability of a finite volume element method for the time‐fractional advection‐diffusion equation
Numerical Methods for Partial Differential Equations,
2018
DOI:10.1002/num.22243
|
|
|
[12]
|
Numerical algorithms for the determinant evaluation of general Hessenberg matrices
Journal of Mathematical Chemistry,
2017
DOI:10.1007/s10910-017-0794-0
|
|
|
[13]
|
New Algorithms for Solving Bordered k-Tridiagonal Linear Systems
Journal of Applied Mathematics and Physics,
2015
DOI:10.4236/jamp.2015.37107
|
|
|
[14]
|
A Generalized Symbolic Thomas Algorithm for Solving Doubly Bordered k-Tridiagonal Linear Systems
Journal of Applied Mathematics and Physics,
2015
DOI:10.4236/jamp.2015.39147
|
|
|
[15]
|
Symbolic algorithms for the inverses of general k-tridiagonal matrices
Computers & Mathematics with Applications,
2015
DOI:10.1016/j.camwa.2015.10.018
|
|
|
[16]
|
On decomposition of k-tridiagonal ℓ-Toeplitz matrices and its applications
Special Matrices,
2015
DOI:10.1515/spma-2015-0019
|
|
|
[17]
|
A new recursive algorithm for inverting general k-tridiagonal matrices
Applied Mathematics Letters,
2015
DOI:10.1016/j.aml.2014.12.018
|
|
|
[18]
|
On the inverse and determinant of general bordered tridiagonal matrices
Computers & Mathematics with Applications,
2015
DOI:10.1016/j.camwa.2015.01.012
|
|
|
[19]
|
Solving Doubly Bordered Tridiagonal Linear Systems via Partition
Applied Mathematics,
2015
DOI:10.4236/am.2015.66089
|
|
|
[20]
|
A generalized symbolic Thomas algorithm for the solution of opposite-bordered tridiagonal linear systems
Journal of Computational and Applied Mathematics,
2015
DOI:10.1016/j.cam.2015.05.026
|
|
|
[21]
|
A novel algorithm for inverting a general k-tridiagonal matrix
Applied Mathematics Letters,
2014
DOI:10.1016/j.aml.2014.02.015
|
|
|
[22]
|
A symbolic algorithm for periodic tridiagonal systems of equations
Journal of Mathematical Chemistry,
2014
DOI:10.1007/s10910-014-0378-1
|
|
|
[23]
|
A note on a fast breakdown-free algorithm for computing the determinants and the permanents of k-tridiagonal matrices
Applied Mathematics and Computation,
2014
DOI:10.1016/j.amc.2014.10.040
|
|
|
[24]
|
Algorithms for Solving Linear Systems of Equations of Tridiagonal Type via Transformations
Applied Mathematics,
2014
DOI:10.4236/am.2014.53042
|
|
|
[25]
|
On Solving Centrosymmetric Linear Systems
Applied Mathematics,
2013
DOI:10.4236/am.2013.412A003
|
|
|
[26]
|
Inversion of k-tridiagonal matrices with Toeplitz structure
Computers & Mathematics with Applications,
2013
DOI:10.1016/j.camwa.2012.11.001
|
|
|