[1]
|
Uncertainty Quantification in Mineral Resource Estimation
Natural Resources Research,
2024
DOI:10.1007/s11053-024-10394-6
|
|
|
[2]
|
Uncertainty Quantification in Mineral Resource Estimation
Natural Resources Research,
2024
DOI:10.1007/s11053-024-10394-6
|
|
|
[3]
|
Geostatistics and artificial intelligence coupling: advanced machine learning neural network regressor for experimental variogram modelling using Bayesian optimization
Frontiers in Earth Science,
2024
DOI:10.3389/feart.2024.1474586
|
|
|
[4]
|
Advanced machine learning artificial neural network classifier for lithology identification using Bayesian optimization
Frontiers in Earth Science,
2024
DOI:10.3389/feart.2024.1473325
|
|
|
[5]
|
A Dimension Selection-Based Constrained Multi-Objective Optimization Algorithm Using a Combination of Artificial Intelligence Methods
Journal of Mechanical Design,
2023
DOI:10.1115/1.4062548
|
|
|
[6]
|
Error reduction in long-term mine planning estimates using deep learning models
Expert Systems with Applications,
2023
DOI:10.1016/j.eswa.2022.119487
|
|
|
[7]
|
Error reduction in long-term mine planning estimates using deep learning models
Expert Systems with Applications,
2023
DOI:10.1016/j.eswa.2022.119487
|
|
|
[8]
|
Error reduction in long-term mine planning estimates using deep learning models
Expert Systems with Applications,
2023
DOI:10.1016/j.eswa.2022.119487
|
|
|
[9]
|
Estimating Ore Grade Using Evolutionary Machine Learning Models
2023
DOI:10.1007/978-981-19-8106-7_2
|
|
|
[10]
|
Advanced Analytics in Mining Engineering
2022
DOI:10.1007/978-3-030-91589-6_7
|
|
|
[11]
|
Novel MLR-RF-Based Geospatial Techniques: A Comparison with OK
ISPRS International Journal of Geo-Information,
2022
DOI:10.3390/ijgi11070371
|
|
|
[12]
|
A Novel Approach for Resource Estimation of Highly Skewed Gold Using Machine Learning Algorithms
Minerals,
2022
DOI:10.3390/min12070900
|
|
|
[13]
|
Gaining Insight from Semi-Variograms into Machine Learning Performance of Rock Domains at a Copper Mine
Minerals,
2022
DOI:10.3390/min12091062
|
|
|
[14]
|
Evaluation of machine learning algorithms for grade estimation using GRNN & SVR
Engineering Research Express,
2022
DOI:10.1088/2631-8695/ac8912
|
|
|
[15]
|
Error Reduction in Long-Term Mine Planning Estimates Using Deep Learning Models
SSRN Electronic Journal ,
2022
DOI:10.2139/ssrn.4167815
|
|
|
[16]
|
Advanced mine optimisation under uncertainty using evolution
Proceedings of the Genetic and Evolutionary Computation Conference Companion,
2021
DOI:10.1145/3449726.3463135
|
|
|
[17]
|
Advanced mine optimisation under uncertainty using evolution
Proceedings of the Genetic and Evolutionary Computation Conference Companion,
2021
DOI:10.1145/3449726.3463135
|
|
|
[18]
|
Machine Learning—A Review of Applications in Mineral Resource Estimation
Energies,
2021
DOI:10.3390/en14144079
|
|
|
[19]
|
A Case Study of Rock Type Prediction Using Random Forests: Erdenet Copper Mine, Mongolia
Minerals,
2021
DOI:10.3390/min11101059
|
|
|
[20]
|
Weather Forecasting
2021
DOI:10.5772/intechopen.98280
|
|
|
[21]
|
Mass and Metallurgical Balance Forecast for a Zinc Processing Plant Using Artificial Neural Networks
Natural Resources Research,
2020
DOI:10.1007/s11053-020-09678-4
|
|
|
[22]
|
Linking Singular Spectrum Analysis and Machine Learning for Monthly Rainfall Forecasting
Applied Sciences,
2020
DOI:10.3390/app10093224
|
|
|
[23]
|
A New Ore Grade Estimation Using Combine Machine Learning Algorithms
Minerals,
2020
DOI:10.3390/min10100847
|
|
|
[24]
|
A review of soft computing application in mineral resources engineering
IOP Conference Series: Earth and Environmental Science,
2018
DOI:10.1088/1755-1315/212/1/012067
|
|
|
[25]
|
Adapting pattern recognition approach for uncertainty assessment in the geologic resource estimation for Indian iron ore mines
2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES),
2016
DOI:10.1109/SCOPES.2016.7955758
|
|
|
[26]
|
Modeling of tensile strength of rocks materials based on support vector machines approaches
International Journal for Numerical and Analytical Methods in Geomechanics,
2013
DOI:10.1002/nag.2154
|
|
|
[27]
|
Rainfall–runoff modeling using least squares support vector machines
Environmetrics,
2012
DOI:10.1002/env.2154
|
|
|
[28]
|
Rainfall-runoff modeling using least squares support vector machines
Environmetrics,
2012
DOI:10.1002/env.2154
|
|
|
[29]
|
Modeling of tensile strength of rocks materials based on support vector machines approaches
International Journal for Numerical and Analytical Methods in Geomechanics,
2012
DOI:10.1002/nag.2154
|
|
|