[1]
|
Integrated CO2 capture and reduction catalysis: Role of γ-Al2O3 support, unique state of potassium and synergy with copper
Journal of Environmental Sciences,
2024
DOI:10.1016/j.jes.2023.06.006
|
|
|
[2]
|
Analyses of hot/warm CO2 removal processes for IGCC power plants
Discover Chemical Engineering,
2023
DOI:10.1007/s43938-023-00034-5
|
|
|
[3]
|
Integrated CO2 capture and reduction catalysis: Role of γ-Al2O3 support, unique state of potassium and synergy with copper
Journal of Environmental Sciences,
2023
DOI:10.1016/j.jes.2023.06.006
|
|
|
[4]
|
Identification of Nano-Metal Oxides That Can Be Synthesized by Precipitation-Calcination Method Reacting Their Chloride Solutions with NaOH Solution and Their Application for Carbon Dioxide Capture from Air—A Thermodynamic Analysis
Materials,
2023
DOI:10.3390/ma16020776
|
|
|
[5]
|
Sustainable Strategies for Greenhouse Gas Emission Reduction in Small Ruminants Farming
Sustainability,
2023
DOI:10.3390/su15054118
|
|
|
[6]
|
Electronic structural and lattice thermodynamic properties of MAlO2 and M5AlO4 (M = Li, Na, K) sorbents for CO2 capture applications
Discover Chemical Engineering,
2023
DOI:10.1007/s43938-023-00022-9
|
|
|
[7]
|
Synthesis and characterization of lithium silicates from organosilicone precursors for carbon dioxide adsorption
Journal of Thermal Analysis and Calorimetry,
2022
DOI:10.1007/s10973-020-10322-9
|
|
|
[8]
|
Mechanistic insights into the CO2 capture and reduction on K-promoted Cu/Al2O3 by spatiotemporal operando methodologies
Catalysis Science & Technology,
2022
DOI:10.1039/D2CY00228K
|
|
|
[9]
|
Greenhouse Gases: Sources, Sinks and Mitigation
2022
DOI:10.1007/978-981-16-4482-5_10
|
|
|
[10]
|
Synthesis and CO2 sorption kinetics of lithium zirconate
Thermochimica Acta,
2021
DOI:10.1016/j.tca.2021.179074
|
|
|
[11]
|
Solar Thermochemistry
Advances in Chemical Engineering,
2021
DOI:10.1016/bs.ache.2021.10.004
|
|
|
[12]
|
CO2 Capture at Medium to High Temperature Using Solid Oxide-Based Sorbents: Fundamental Aspects, Mechanistic Insights, and Recent Advances
Chemical Reviews,
2021
DOI:10.1021/acs.chemrev.1c00100
|
|
|
[13]
|
Synthesis and CO2 sorption kinetics of lithium zirconate
Thermochimica Acta,
2021
DOI:10.1016/j.tca.2021.179074
|
|
|
[14]
|
Solar Thermochemistry
Advances in Chemical Engineering,
2021
DOI:10.1016/bs.ache.2021.10.004
|
|
|
[15]
|
Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO
2
Valorization
Advanced Energy Materials,
2021
DOI:10.1002/aenm.202102767
|
|
|
[16]
|
Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO2 Valorization
Advanced Energy Materials,
2021
DOI:10.1002/aenm.202102767
|
|
|
[17]
|
CO2 Capture at Medium to High Temperature Using Solid Oxide-Based Sorbents: Fundamental Aspects, Mechanistic Insights, and Recent Advances
Chemical Reviews,
2021
DOI:10.1021/acs.chemrev.1c00100
|
|
|
[18]
|
Blending Wastes of Marble Powder and Dolomite Sorbents for Calcium-Looping CO2 Capture under Realistic Industrial Calcination Conditions
Materials,
2021
DOI:10.3390/ma14164379
|
|
|
[19]
|
Lithium silicates synthetized from iron and steel slags as high temperature CO2 adsorbent materials
Adsorption,
2020
DOI:10.1007/s10450-019-00198-z
|
|
|
[20]
|
Impacts of molybdenum-, nickel-, and lithium- oxide nanomaterials on soil activity and microbial community structure
Science of The Total Environment,
2019
DOI:10.1016/j.scitotenv.2018.10.189
|
|
|
[21]
|
Hydrodynamics of bubbling fluidized bed for adsorption of CO2
with KOH/K2
CO3
The Canadian Journal of Chemical Engineering,
2019
DOI:10.1002/cjce.23388
|
|
|
[22]
|
Thermokinetic evaluation of iron addition on lithium metazirconate (Fe-Li2ZrO3) for enhancing carbon dioxide capture at high temperatures
Thermochimica Acta,
2019
DOI:10.1016/j.tca.2019.01.017
|
|
|
[23]
|
Assessment of M2O(111) (M = Li and Na) surfaces for CO2 adsorption based on first-principles calculations
Applied Surface Science,
2019
DOI:10.1016/j.apsusc.2019.04.137
|
|
|
[24]
|
Kinetics of Solid-Gas Reactions and Their Application to Carbonate Looping Systems
Energies,
2019
DOI:10.3390/en12152981
|
|
|
[25]
|
Technological challenges and industrial applications of CaCO3/CaO based thermal energy storage system – A review
Solar Energy,
2019
DOI:10.1016/j.solener.2019.10.003
|
|
|
[26]
|
Time-Resolved Synchrotron Powder X-ray Diffraction Studies on the Synthesis of Li8SiO6 and Its Reaction with CO2
Inorganic Chemistry,
2019
DOI:10.1021/acs.inorgchem.8b01297
|
|
|
[27]
|
Understanding CO2 Adsorption on a M1 (M2)-Promoted (Doped) MgO–CaO(100) Surface (M1 = Li, Na, K, and Rb, M2 = Sr): A DFT Theoretical Study
ACS Sustainable Chemistry & Engineering,
2019
DOI:10.1021/acssuschemeng.9b01223
|
|
|
[28]
|
Hydrodynamics of bubbling fluidized bed for adsorption of CO2 with KOH/K2CO3
The Canadian Journal of Chemical Engineering,
2019
DOI:10.1002/cjce.23388
|
|
|
[29]
|
Time-Resolved Synchrotron Powder X-ray Diffraction Studies on the Synthesis of Li8SiO6 and Its Reaction with CO2
Inorganic Chemistry,
2019
DOI:10.1021/acs.inorgchem.8b01297
|
|
|
[30]
|
Understanding CO2 Adsorption on a M1 (M2)-Promoted (Doped) MgO–CaO(100) Surface (M1 = Li, Na, K, and Rb, M2 = Sr): A DFT Theoretical Study
ACS Sustainable Chemistry & Engineering,
2019
DOI:10.1021/acssuschemeng.9b01223
|
|
|
[31]
|
Assessment of Artificial Photosynthetic Systems for Integrated Carbon Capture and Conversion
ACS Sustainable Chemistry & Engineering,
2019
DOI:10.1021/acssuschemeng.8b04969
|
|
|
[32]
|
Assessment of Artificial Photosynthetic Systems for Integrated Carbon Capture and Conversion
ACS Sustainable Chemistry & Engineering,
2019
DOI:10.1021/acssuschemeng.8b04969
|
|
|
[33]
|
In Situ Observation of Carbon Dioxide Capture on Pseudo-Liquid Eutectic Mixture-Promoted Magnesium Oxide
ACS Applied Materials & Interfaces,
2018
DOI:10.1021/acsami.7b14256
|
|
|
[34]
|
Ultrafast and Stable CO2 Capture Using Alkali Metal Salt-Promoted MgO–CaCO3 Sorbents
ACS Applied Materials & Interfaces,
2018
DOI:10.1021/acsami.8b05829
|
|
|
[35]
|
Post-combustion Carbon Dioxide Capture Materials
2018
DOI:10.1039/9781788013352-00076
|
|
|
[36]
|
Preparation and Evaluation of CaO-Based CO2 Sorbents Deposited on Saffil Fiber Supports
Energy & Fuels,
2018
DOI:10.1021/acs.energyfuels.8b00986
|
|
|
[37]
|
In Situ Observation of Carbon Dioxide Capture on Pseudo-Liquid Eutectic Mixture-Promoted Magnesium Oxide
ACS Applied Materials & Interfaces,
2018
DOI:10.1021/acsami.7b14256
|
|
|
[38]
|
Toward the Insights into Fast CO2 Absorption over Novel Nanostructured MgO-Based Sorbent
Industrial & Engineering Chemistry Research,
2018
DOI:10.1021/acs.iecr.8b01294
|
|
|
[39]
|
Post-combustion Carbon Dioxide Capture Materials
2018
DOI:10.1039/9781788013352-00076
|
|
|
[40]
|
Toward the Insights into Fast CO2 Absorption over Novel Nanostructured MgO-Based Sorbent
Industrial & Engineering Chemistry Research,
2018
DOI:10.1021/acs.iecr.8b01294
|
|
|
[41]
|
Ultrafast and Stable CO2 Capture Using Alkali Metal Salt-Promoted MgO–CaCO3 Sorbents
ACS Applied Materials & Interfaces,
2018
DOI:10.1021/acsami.8b05829
|
|
|
[42]
|
Preparation and Evaluation of CaO-Based CO2 Sorbents Deposited on Saffil Fiber Supports
Energy & Fuels,
2018
DOI:10.1021/acs.energyfuels.8b00986
|
|
|
[43]
|
Investigation of metal oxides, mixed oxides, perovskites and alkaline earth carbonates/hydroxides as suitable candidate materials for high-temperature thermochemical energy storage using reversible solid-gas reactions
Materials Today Energy,
2018
DOI:10.1016/j.mtener.2018.08.007
|
|
|
[44]
|
Integrated Gasification Combined Cycle (IGCC) Technologies
2017
DOI:10.1016/B978-0-08-100167-7.00011-1
|
|
|
[45]
|
Evaluation and performances comparison of calcium, strontium and barium carbonates during calcination/carbonation reactions for solar thermochemical energy storage
Journal of Energy Storage,
2017
DOI:10.1016/j.est.2017.07.014
|
|
|
[46]
|
Enhanced Sorption Cycle Stability and Kinetics of CO2 on Lithium Silicates Using the Lithium Ion Channeling Effect of TiO2 Nanotubes
Industrial & Engineering Chemistry Research,
2017
DOI:10.1021/acs.iecr.6b04918
|
|
|
[47]
|
Enhanced Sorption Cycle Stability and Kinetics of CO2 on Lithium Silicates Using the Lithium Ion Channeling Effect of TiO2 Nanotubes
Industrial & Engineering Chemistry Research,
2017
DOI:10.1021/acs.iecr.6b04918
|
|
|
[48]
|
CO Chemical Capture on Lithium Cuprate, Through a Consecutive CO Oxidation and Chemisorption Bifunctional Process
The Journal of Physical Chemistry C,
2016
DOI:10.1021/acs.jpcc.5b11147
|
|
|
[49]
|
CO Chemical Capture on Lithium Cuprate, Through a Consecutive CO Oxidation and Chemisorption Bifunctional Process
The Journal of Physical Chemistry C,
2016
DOI:10.1021/acs.jpcc.5b11147
|
|
|
[50]
|
Large scale computational screening and experimental discovery of novel materials for high temperature CO2 capture
Energy Environ. Sci.,
2016
DOI:10.1039/C5EE03253A
|
|
|
[51]
|
Carbon dioxide absorption behavior of surface-modified lithium orthosilicate/potassium carbonate prepared by ball milling
International Journal of Hydrogen Energy,
2016
DOI:10.1016/j.ijhydene.2016.06.158
|
|
|
[52]
|
Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage
Renewable and Sustainable Energy Reviews,
2016
DOI:10.1016/j.rser.2016.06.043
|
|
|
[53]
|
Regenerable magnesium-based sorbent for high-pressure and moderate-temperature CO2 capture: Physicochemical structures and capture performances
Fuel,
2015
DOI:10.1016/j.fuel.2015.07.020
|
|
|
[54]
|
Development of sodium/lithium/fly ash sorbents for high temperature post-combustion CO2 capture
Applied Energy,
2015
DOI:10.1016/j.apenergy.2015.07.008
|
|
|
[55]
|
Regeneration mechanisms of high-lithium content zirconates as CO2 capture sorbents: experimental measurements and theoretical investigations
Phys. Chem. Chem. Phys.,
2015
DOI:10.1039/C5CP03968A
|
|
|
[56]
|
Ab initio thermodynamic approach to identify mixed solid sorbents for CO2 capture technology
Frontiers in Environmental Science,
2015
DOI:10.3389/fenvs.2015.00069
|
|
|
[57]
|
Water steam effect during high CO2 chemisorption in lithium cuprate (Li2CuO2) at moderate temperatures: experimental and theoretical evidence
RSC Adv.,
2015
DOI:10.1039/C5RA03580E
|
|
|
[58]
|
Electronic Structure, Phonon Dynamical Properties, andCO2Capture Capability ofNa2−xMxZrO3(M=Li,K): Density-Functional Calculations and Experimental Validations
Physical Review Applied,
2015
DOI:10.1103/PhysRevApplied.3.044013
|
|
|
[59]
|
CO2 Absorption Studies on Mixed Alkali Orthosilicates Containing Rare-Earth Second-Phase Additives
The Journal of Physical Chemistry C,
2015
DOI:10.1021/jp511908t
|
|
|
[60]
|
Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review
Journal of Cleaner Production,
2015
DOI:10.1016/j.jclepro.2014.12.059
|
|
|
[61]
|
CO2 Absorption Studies on Mixed Alkali Orthosilicates Containing Rare-Earth Second-Phase Additives
The Journal of Physical Chemistry C,
2015
DOI:10.1021/jp511908t
|
|
|
[62]
|
Reactor and Process Design in Sustainable Energy Technology
2014
DOI:10.1016/B978-0-444-59566-9.00002-8
|
|
|
[63]
|
Enhanced CO2absorption kinetics in lithium silicate platelets synthesized by a sol–gel approach
Journal of Materials Chemistry A,
2014
DOI:10.1039/C4TA01976H
|
|
|
[64]
|
Thermodynamic performance assessment and comparison of IGCC with solid cycling process for CO2 capture at high and medium temperatures
International Journal of Hydrogen Energy,
2014
DOI:10.1016/j.ijhydene.2014.02.005
|
|
|
[65]
|
A comparative study of CO2 sorption properties for different oxides
Materials for Renewable and Sustainable Energy,
2014
DOI:10.1007/s40243-014-0030-9
|
|
|
[66]
|
Analysis of the CO2 chemisorption reaction mechanism in lithium oxosilicate (Li8SiO6): a new option for high-temperature CO2 capture
Journal of Materials Chemistry A,
2013
DOI:10.1039/c3ta00421j
|
|
|
[67]
|
Microstructural and CO2 chemisorption analyses of Li4SiO4: Effect of surface modification by the ball milling process
Thermochimica Acta,
2013
DOI:10.1016/j.tca.2012.11.018
|
|
|
[68]
|
CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach
Physical Chemistry Chemical Physics,
2013
DOI:10.1039/c3cp51659h
|
|
|
[69]
|
Structural and electronic properties of Li8ZrO6 and its CO2 capture capabilities: an ab initio thermodynamic approach
Physical Chemistry Chemical Physics,
2013
DOI:10.1039/c3cp51101d
|
|
|
[70]
|
SPECIAL TOPICS — Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options1
Journal of Animal Science,
2013
DOI:10.2527/jas.2013-6584
|
|
|
[71]
|
High CO2 Capture in Sodium Metasilicate (Na2SiO3) at Low Temperatures (30–60 °C) through the CO2–H2O Chemisorption Process
The Journal of Physical Chemistry C,
2013
DOI:10.1021/jp402850j
|
|
|
[72]
|
High CO2 Capture in Sodium Metasilicate (Na2SiO3) at Low Temperatures (30–60 °C) through the CO2–H2O Chemisorption Process
The Journal of Physical Chemistry C,
2013
DOI:10.1021/jp402850j
|
|
|
[73]
|
Density functional theory studies on the electronic, structural, phonon dynamical and thermo-stability properties of bicarbonates MHCO3, M = Li, Na, K
Journal of Physics: Condensed Matter,
2012
DOI:10.1088/0953-8984/24/32/325501
|
|
|