[1]
|
Surfactant-Specific AI-Driven Molecular Design: Integrating Generative Models, Predictive Modeling, and Reinforcement Learning for Tailored Surfactant Synthesis
Industrial & Engineering Chemistry Research,
2024
DOI:10.1021/acs.iecr.4c00401
|
|
|
[2]
|
Surfactant-Specific AI-Driven Molecular Design: Integrating Generative Models, Predictive Modeling, and Reinforcement Learning for Tailored Surfactant Synthesis
Industrial & Engineering Chemistry Research,
2024
DOI:10.1021/acs.iecr.4c00401
|
|
|
[3]
|
Inverse design of optical lenses enabled by generative flow-based invertible neural networks
Scientific Reports,
2023
DOI:10.1038/s41598-023-43698-3
|
|
|
[4]
|
SELFIES and the future of molecular string representations
Patterns,
2022
DOI:10.1016/j.patter.2022.100588
|
|
|
[5]
|
SELFIES and the future of molecular string representations
Patterns,
2022
DOI:10.1016/j.patter.2022.100588
|
|
|
[6]
|
SELFIES and the future of molecular string representations
Patterns,
2022
DOI:10.1016/j.patter.2022.100588
|
|
|
[7]
|
Generative modeling and reinforcement learning for acoustic lens design
Metamaterials, Metadevices, and Metasystems 2022,
2022
DOI:10.1117/12.2642956
|
|
|
[8]
|
SELFIES and the future of molecular string representations
Patterns,
2022
DOI:10.1016/j.patter.2022.100588
|
|
|
[9]
|
Generative modeling and reinforcement learning for acoustic lens design
Metamaterials, Metadevices, and Metasystems 2022,
2022
DOI:10.1117/12.2642956
|
|
|
[10]
|
SELFIES and the future of molecular string representations
Patterns,
2022
DOI:10.1016/j.patter.2022.100588
|
|
|