[1]
|
Rational Design of Hot‐Melt Biodegradable Tissue Adhesive for Bone Fracture Repair
Polymers for Advanced Technologies,
2024
DOI:10.1002/pat.70022
|
|
|
[2]
|
Advances in Wind Turbine Blade Design and Materials
2023
DOI:10.1016/B978-0-08-103007-3.00005-7
|
|
|
[3]
|
Injection Molding Process Simulation of Polycaprolactone Sticks for Further 3D Printing of Medical Implants
Materials,
2022
DOI:10.3390/ma15207295
|
|
|
[4]
|
Performance modifying techniques for recycled thermoplastics
Resources, Conservation and Recycling,
2021
DOI:10.1016/j.resconrec.2021.105887
|
|
|
[5]
|
Polycaprolactone‐based hotmelt adhesive for hernia‐mesh fixation
Polymers for Advanced Technologies,
2020
DOI:10.1002/pat.5044
|
|
|
[6]
|
A comprehensive investigation into the structure-property relationship of wax and how it influences the properties of hot melt adhesives
International Journal of Adhesion and Adhesives,
2020
DOI:10.1016/j.ijadhadh.2020.102559
|
|
|
[7]
|
Thermoplastic polyurethane-based polycarbonate diol hot melt adhesives: The effect of hard-soft segment ratio on adhesion properties
International Journal of Adhesion and Adhesives,
2020
DOI:10.1016/j.ijadhadh.2020.102677
|
|
|
[8]
|
Polycaprolactone‐based hotmelt adhesive for
hernia‐mesh
fixation
Polymers for Advanced Technologies,
2020
DOI:10.1002/pat.5044
|
|
|
[9]
|
Sustainable hot-melt adhesives based on soybean protein isolate and polycaprolactone
Industrial Crops and Products,
2019
DOI:10.1016/j.indcrop.2019.04.043
|
|
|