[1]
|
Mitigation of Salinity Stress Effects on Broad Bean Productivity Using Calcium Phosphate Nanoparticles Application
Horticulturae,
2022
DOI:10.3390/horticulturae8010075
|
|
|
[2]
|
Sustainable Nanotechnology for Environmental Remediation
2022
DOI:10.1016/B978-0-12-824547-7.00014-X
|
|
|
[3]
|
Impact of the foliar application of potassium nanofertilizer on biomass, yield, nitrogen assimilation and photosynthetic activity in green beans
Notulae Botanicae Horti Agrobotanici Cluj-Napoca,
2022
DOI:10.15835/nbha50112569
|
|
|
[4]
|
Se nanoparticles stabilized with Allamanda cathartica L. flower extract inhibited phytopathogens and promoted mustard growth under salt stress
Heliyon,
2022
DOI:10.1016/j.heliyon.2022.e09076
|
|
|
[5]
|
Se nanoparticles stabilized with Allamanda cathartica L. flower extract inhibited phytopathogens and promoted mustard growth under salt stress
Heliyon,
2022
DOI:10.1016/j.heliyon.2022.e09076
|
|
|
[6]
|
Sustainable Agriculture Reviews 53
Sustainable Agriculture Reviews,
2021
DOI:10.1007/978-3-030-86876-5_8
|
|
|
[7]
|
Sustainable Agriculture Reviews 53
Sustainable Agriculture Reviews,
2021
DOI:10.1007/978-3-030-86876-5_8
|
|
|
[8]
|
Nanoparticles potentially mediate salt stress tolerance in plants
Plant Physiology and Biochemistry,
2021
DOI:10.1016/j.plaphy.2021.01.028
|
|
|
[9]
|
Nanoparticles potentially mediate salt stress tolerance in plants
Plant Physiology and Biochemistry,
2021
DOI:10.1016/j.plaphy.2021.01.028
|
|
|
[10]
|
Plant Performance Under Environmental Stress
2021
DOI:10.1007/978-3-030-78521-5_15
|
|
|
[11]
|
Assessment of Alfalfa (Medicago sativa L.) Cultivars for Salt Tolerance Based on Yield, Growth, Physiological, and Biochemical Traits
Journal of Plant Growth Regulation,
2021
DOI:10.1007/s00344-021-10499-9
|
|
|
[12]
|
In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress
Plant Cell Reports,
2021
DOI:10.1007/s00299-020-02613-0
|
|
|
[13]
|
Nanoparticles potentially mediate salt stress tolerance in plants
Plant Physiology and Biochemistry,
2021
DOI:10.1016/j.plaphy.2021.01.028
|
|
|
[14]
|
Impacts of nano- and non-nanofertilizers on potato quality and productivity
Acta Ecologica Sinica,
2020
DOI:10.1016/j.chnaes.2019.12.007
|
|
|
[15]
|
Genetic diversity of salt tolerance in tetraploid alfalfa (Medicago sativa L.)
Acta Physiologiae Plantarum,
2020
DOI:10.1007/s11738-019-2993-8
|
|
|
[16]
|
In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress
Plant Cell Reports,
2020
DOI:10.1007/s00299-020-02613-0
|
|
|
[17]
|
New and Future Developments in Microbial Biotechnology and Bioengineering
2019
DOI:10.1016/B978-0-444-64191-5.00007-9
|
|
|
[18]
|
Responses of Tomato Plants under Saline Stress to Foliar Application of Copper Nanoparticles
Plants,
2019
DOI:10.3390/plants8060151
|
|
|
[19]
|
Temporal Impacts of Different Fertilization Systems on Soil Health under Arid Conditions of Potato Monocropping
Journal of Soil Science and Plant Nutrition,
2019
DOI:10.1007/s42729-019-00110-2
|
|
|
[20]
|
Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity
Agronomy,
2019
DOI:10.3390/agronomy10010019
|
|
|
[21]
|
Salinity Responses and Tolerance in Plants, Volume 1
2018
DOI:10.1007/978-3-319-75671-4_4
|
|
|
[22]
|
Plant Nutrients and Abiotic Stress Tolerance
2018
DOI:10.1007/978-981-10-9044-8_14
|
|
|
[23]
|
Nanobiotechnology Applications in Plant Protection
Nanotechnology in the Life Sciences,
2018
DOI:10.1007/978-3-319-91161-8_4
|
|
|