[1]
|
A review on nanobioremediation approaches for restoration of contaminated soil
EURASIAN JOURNAL OF SOIL SCIENCE (EJSS),
2022
DOI:10.18393/ejss.990605
|
|
|
[2]
|
Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water
2022
DOI:10.1016/B978-0-323-85763-5.00016-7
|
|
|
[3]
|
Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water
2022
DOI:10.1016/B978-0-323-85763-5.00029-5
|
|
|
[4]
|
The photometric detection and decontamination of organochlorine compound in synthetic water sample using La:/ZnO/PAN nanofiber catalyst
Toxin Reviews,
2022
DOI:10.1080/15569543.2021.1885447
|
|
|
[5]
|
Bioresource Technology
2022
DOI:10.1002/9781119789444.ch16
|
|
|
[6]
|
Transport and Retention of Poly(Acrylic Acid-co-Maleic Acid) Coated Magnetite Nanoparticles in Porous Media: Effect of Input Concentration, Ionic Strength and Grain Size
Nanomaterials,
2022
DOI:10.3390/nano12091536
|
|
|
[7]
|
Biodegradation and Detoxification of Micropollutants in Industrial Wastewater
2022
DOI:10.1016/B978-0-323-88507-2.00007-5
|
|
|
[8]
|
Pesticides Bioremediation
2022
DOI:10.1007/978-3-030-97000-0_17
|
|
|
[9]
|
Removal of organochlorine pesticides using zerovalent iron supported on biochar nanocomposite from Nephelium lappaceum (Rambutan) fruit peel waste
Chemosphere,
2022
DOI:10.1016/j.chemosphere.2021.133011
|
|
|
[10]
|
Handbook of Green and Sustainable Nanotechnology
2022
DOI:10.1007/978-3-030-69023-6_40-1
|
|
|
[11]
|
Agrochemicals in Soil and Environment
2022
DOI:10.1007/978-981-16-9310-6_4
|
|
|
[12]
|
Remediation of heavy metal(loid) contaminated soil through green nanotechnology
Frontiers in Sustainable Food Systems,
2022
DOI:10.3389/fsufs.2022.932424
|
|
|
[13]
|
Pesticides in the Natural Environment
2022
DOI:10.1016/B978-0-323-90489-6.00018-5
|
|
|
[14]
|
Challenges and effectiveness of nanotechnology-based photocatalysis for pesticides-contaminated water: A review
Environmental Research,
2022
DOI:10.1016/j.envres.2022.113336
|
|
|
[15]
|
Insights into the recent advances in nano-bioremediation of pesticides from the contaminated soil
Frontiers in Microbiology,
2022
DOI:10.3389/fmicb.2022.982611
|
|
|
[16]
|
Removal of organochlorine pesticides using zerovalent iron supported on biochar nanocomposite from Nephelium lappaceum (Rambutan) fruit peel waste
Chemosphere,
2022
DOI:10.1016/j.chemosphere.2021.133011
|
|
|
[17]
|
Assisted Phytoremediation
2022
DOI:10.1016/B978-0-12-822893-7.00011-2
|
|
|
[18]
|
Challenges and effectiveness of nanotechnology-based photocatalysis for pesticides-contaminated water: A review
Environmental Research,
2022
DOI:10.1016/j.envres.2022.113336
|
|
|
[19]
|
Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives
Environmental Science and Pollution Research,
2021
DOI:10.1007/s11356-020-11598-y
|
|
|
[20]
|
Phytoremediation of Toxic Metals: A Sustainable Green Solution for Clean Environment
Applied Sciences,
2021
DOI:10.3390/app112110348
|
|
|
[21]
|
Remediation of emerging environmental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials
Chemosphere,
2021
DOI:10.1016/j.chemosphere.2021.129975
|
|
|
[22]
|
Remediation of emerging environmental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials
Chemosphere,
2021
DOI:10.1016/j.chemosphere.2021.129975
|
|
|
[23]
|
An updated review on synthetic approaches of green nanomaterials and their application for removal of water pollutants: Current challenges, assessment and future perspectives
Journal of Environmental Chemical Engineering,
2021
DOI:10.1016/j.jece.2021.106763
|
|
|
[24]
|
Arsenic removal technologies and future trends: A mini review
Journal of Cleaner Production,
2021
DOI:10.1016/j.jclepro.2020.123805
|
|
|
[25]
|
Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives
Environmental Science and Pollution Research,
2021
DOI:10.1007/s11356-020-11598-y
|
|
|
[26]
|
Nanomaterials for Soil Remediation
2021
DOI:10.1016/B978-0-12-822891-3.00026-8
|
|
|
[27]
|
Nanomaterials for remediation of contaminants: a review
Environmental Chemistry Letters,
2021
DOI:10.1007/s10311-021-01212-z
|
|
|
[28]
|
Arbuscular mycorrhizal fungus facilitates ryegrass (Lolium perenne L.) growth and polychlorinated biphenyls degradation in a soil applied with nanoscale zero-valent iron
Ecotoxicology and Environmental Safety,
2021
DOI:10.1016/j.ecoenv.2021.112170
|
|
|
[29]
|
Synergistic remediation of PCB-contaminated soil with nanoparticulate zero-valent iron and alfalfa: targeted changes in the root metabolite-dependent microbial community
Environmental Science: Nano,
2021
DOI:10.1039/D1EN00077B
|
|
|
[30]
|
Synergistic effect of Ficus-zero valent iron supported on adsorbents and Plantago major for chlorpyrifos phytoremediation from water
International Journal of Phytoremediation,
2020
DOI:10.1080/15226514.2020.1803201
|
|
|
[31]
|
Phytoremediation potential of Miscanthus sinensis And. in organochlorine pesticides contaminated soil amended by Tween 20 and Activated carbon
Environmental Science and Pollution Research,
2020
DOI:10.1007/s11356-020-11609-y
|
|
|
[32]
|
Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes
Science of The Total Environment,
2020
DOI:10.1016/j.scitotenv.2019.135858
|
|
|
[33]
|
Green nano-phytoremediation and solubility improving agents for the remediation of chlorfenapyr contaminated soil and water
Journal of Environmental Management,
2020
DOI:10.1016/j.jenvman.2020.110104
|
|
|
[34]
|
Agrochemicals Detection, Treatment and Remediation
2020
DOI:10.1016/B978-0-08-103017-2.00018-0
|
|
|
[35]
|
Agrochemicals Detection, Treatment and Remediation
2020
DOI:10.1016/B978-0-08-103017-2.00019-2
|
|
|
[36]
|
Agrochemicals Detection, Treatment and Remediation
2020
DOI:10.1016/B978-0-08-103017-2.00020-9
|
|
|
[37]
|
Emerging Eco-friendly Green Technologies for Wastewater Treatment
Microorganisms for Sustainability,
2020
DOI:10.1007/978-981-15-1390-9_5
|
|
|
[38]
|
Virgin (Fe0) and microbially regenerated (Fe2+) iron turning waste for treating chlorinated pesticides in water
Journal of Hazardous Materials,
2020
DOI:10.1016/j.jhazmat.2020.122980
|
|
|
[39]
|
Promises and potential of in situ nano-phytoremediation strategy to mycorrhizo-remediate heavy metal contaminated soils using non-food bioenergy crops (Vetiver zizinoides & Cannabis sativa)
International Journal of Phytoremediation,
2020
DOI:10.1080/15226514.2020.1774504
|
|
|
[40]
|
Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil
Science of The Total Environment,
2019
DOI:10.1016/j.scitotenv.2019.01.234
|
|
|
[41]
|
Using nanomaterials to facilitate the phytoremediation of contaminated soil
Critical Reviews in Environmental Science and Technology,
2019
DOI:10.1080/10643389.2018.1558891
|
|
|
[42]
|
Handbook of Environmental Materials Management
2019
DOI:10.1007/978-3-319-73645-7_33
|
|
|
[43]
|
Iron turning waste media for treating Endosulfan and Heptachlor contaminated water
Science of The Total Environment,
2019
DOI:10.1016/j.scitotenv.2019.05.424
|
|
|
[44]
|
Phytoremediation
2018
DOI:10.1007/978-3-319-99651-6_15
|
|
|
[45]
|
Persistent Organic Pollutants [Working Title]
2018
DOI:10.5772/intechopen.81094
|
|
|
[46]
|
Handbook of Environmental Materials Management
2018
DOI:10.1007/978-3-319-58538-3_33-1
|
|
|
[47]
|
Coupling of zero-valent magnesium or magnesium–palladium-mediated reductive transformation to bacterial oxidation for elimination of endosulfan
International Journal of Environmental Science and Technology,
2018
DOI:10.1007/s13762-018-1748-1
|
|
|
[48]
|
Phytoremediation
2018
DOI:10.1007/978-3-319-99651-6_18
|
|
|
[49]
|
Phytoremediation
2018
DOI:10.1007/978-3-319-99651-6_16
|
|
|