[1]
|
Detection of Network Attacks using Machine Learning and Deep Learning Models
Procedia Computer Science,
2023
DOI:10.1016/j.procs.2022.12.401
|
|
|
[2]
|
Detection of Network Attacks using Machine Learning and Deep Learning Models
Procedia Computer Science,
2023
DOI:10.1016/j.procs.2022.12.401
|
|
|
[3]
|
Machine Learning Models to Classify Normal and Fibrotic Mouse Liver Model using Dielectric Properties
2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
2022
DOI:10.1109/BIBM55620.2022.9995397
|
|
|
[4]
|
Detection of Intrusions and Malware, and Vulnerability Assessment
Lecture Notes in Computer Science,
2022
DOI:10.1007/978-3-031-09484-2_2
|
|
|
[5]
|
Intrusion detection in cyber–physical environment using hybrid Naïve Bayes—Decision table and multi-objective evolutionary feature selection
Computer Communications,
2022
DOI:10.1016/j.comcom.2022.03.009
|
|
|
[6]
|
Intrusion detection in cyber–physical environment using hybrid Naïve Bayes—Decision table and multi-objective evolutionary feature selection
Computer Communications,
2022
DOI:10.1016/j.comcom.2022.03.009
|
|
|
[7]
|
A Consolidated Decision Tree-Based Intrusion Detection System for Binary and Multiclass Imbalanced Datasets
Mathematics,
2021
DOI:10.3390/math9070751
|
|
|
[8]
|
Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cybersecurity
Energies,
2020
DOI:10.3390/en13102509
|
|
|
[9]
|
Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset
Future Generation Computer Systems,
2019
DOI:10.1016/j.future.2019.05.041
|
|
|
[10]
|
Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey
Applied Sciences,
2019
DOI:10.3390/app9204396
|
|
|
[11]
|
A Case Study on using Deep Learning for Network Intrusion Detection
MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM),
2019
DOI:10.1109/MILCOM47813.2019.9020824
|
|
|
[12]
|
Network Intrusion Detection Using Flow Statistics
2018 IEEE Statistical Signal Processing Workshop (SSP),
2018
DOI:10.1109/SSP.2018.8450709
|
|
|
[13]
|
A hybrid architecture to enrich context awareness through data correlation
Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
2018
DOI:10.1145/3167132.3167405
|
|
|
[14]
|
Machine Learning and Deep Learning Methods for Cybersecurity
IEEE Access,
2018
DOI:10.1109/ACCESS.2018.2836950
|
|
|
[15]
|
Anomaly-Based Intrusion Detection Using Extreme Learning Machine and Aggregation of Network Traffic Statistics in Probability Space
Cognitive Computation,
2018
DOI:10.1007/s12559-018-9564-y
|
|
|
[16]
|
Mining Anomalies in Large ISCX Dataset Using Machine Learning Algorithms in KNIME
SSRN Electronic Journal ,
2018
DOI:10.2139/ssrn.3170295
|
|
|
[17]
|
A hybrid architecture to enrich context awareness through data correlation
Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
2018
DOI:10.1145/3167132.3167405
|
|
|