American Journal of Analytical Chemistry

American Journal of Analytical Chemistry

ISSN Print: 2156-8251
ISSN Online: 2156-8278
www.scirp.org/journal/ajac
E-mail: ajac@scirp.org
"Efficient Removal of La(III) and Nd(III) from Aqueous Solutions Using Carbon Nanoparticles"
written by Alaa M. Younis, Artem V. Kolesnikov, Andrei V. Desyatov,
published by American Journal of Analytical Chemistry, Vol.5 No.17, 2014
has been cited by the following article(s):
  • Google Scholar
  • CrossRef
[1] Porous materials for the recovery of rare earth elements, platinum group metals, and other valuable metals: a review
Environmental …, 2022
[2] Nano-remediation for the decolourisation of textile effluents: A review
Nanofabrication, 2022
[3] Immobilization of Cd (II) using Pistia stratiotes L.(Araceae) biomaterial: optimization study using statistical design
2020
[4] Monitoring of Some Heavy Metals in the Water and Three Submerged Plants of the Southern Part of Lake Manzala
2020
[5] Novel eco-friendly amino-modified nanoparticles for phenol removal from aqueous solution
2020
[6] Comparison of Jordanian and standard diatomaceous earth as an adsorbent for removal of Sm (III) and Nd (III) from aqueous solution
2019
[7] Сорбционная очистка растворов от ионов тяжелых металлов с применением цеолита, модифицированного углеродными нанотрубками
2019
[8] Adsorption of rare earth metals from wastewater by nanomaterials: A review
2019
[9] Effect of different molecular weights of chitosan on the removal efficiencies of heavy metals from contaminated water
2019
[10] Influence of several dietary protein and lipid levels on nutritional parameters and liver functions of Solea aegyptiaca juveniles
2018
[11] Novi nanomateriali za adsorpcijo redkozemeljskih elementov iz vodnih raztopin
2018
[12] Rare earth elements removal techniques from water/wastewater: a review
2018
[13] СНИЖЕНИЕ ЭКОЛОГИЧЕСКОЙ ОПАСНОСТИ СМАЗОЧНО-ОХЛАЖДАЮЩИХ ЖИДКОСТЕЙ СТАБИЛИЗАЦИЕЙ УГЛЕРОДНЫМИ НАНОТРУБКАМИ И УТИЛИЗАЦИЕЙ ОТРАБОТАННЫХ ЭМУЛЬСИЙ
Thesis, 2018
[14] Модифицирование природного цеолита углеродными нанотрубками для улучшения сорбционных свойств
2018
[15] Increasing the Efficiency of the Electroflotation Recovery of Finely Dispersed Carbon Material in the Presence of Surfactants from Liquid Technogenic Waste
Theoretical Foundations of Chemical Engineering, 2018
[16] ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ЭЛЕКТРОФЛОТАЦИОННОГО ПРОЦЕССА ИЗВЛЕЧЕНИЯ ВЫСОКОДИСПЕРСНОГО УГЛЕРОДНОГО МАТЕРИАЛА В …
2018
[17] The role of surfactants in wastewater treatment: impact, removal and future techniques: A critical review
Water Research, 2018
[18] ВЛИЯНИЕ УГЛЕРОДНЫХ НАНОТРУБОК В СОСТАВЕ ЭПОКСИАМИННЫХ ПОКРЫТИЙ НА АДГЕЗИЮ И УДАРНУЮ ПРОЧНОСТЬ
2018
[19] Increasing the Efficiency of the Electroflotation Recovery of Finely Dispersed Carbon Material in the Presence of Surfactants from Liquid Technogenic Waste.
2018
[20] Влияние поверхностно-активных веществ и гидроксидов никеля (II) и кобальта (II) на эффективность процесса электрофлотационного извлечения …
2017
[21] Experimental studies of interfacial phenomena on innovative carbon nanomaterials in aqueous electrolyte solutions
Doklady Chemistry, 2017
[22] Сравнение влияния поверхностно-активных веществ на электрофлотационное извлечение лантана и скандия
2017
[23] Effect of Surfactants and Carbon Nanomaterials on the Electroflotation Extraction of the Disperse Phase of Cobalt Hydroxides
Russian Journal of Electrochemistry, 2017
[24] Immobilization of chitosan nanolayers on the surface of nano-titanium oxide as a novel nanocomposite for efficient removal of La (III) from water
International Journal of Biological Macromolecules, 2017
[25] Physicochemical efficiency of electroflotation of finely divided carbon nanomaterial from aqueous solutions containing surfactants
Doklady Chemistry, 2017
[26] ФИЗИКО-ХИМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПРОЦЕССА ЭЛЕКТРОФЛОТАЦИИ ВЫСОКОДИСПЕРСНОГО УГЛЕРОДНОГО НАНОМАТЕРИАЛА ИЗ ВОДНЫХ …
2017
[27] ВЛИЯНИЕ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ И УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ НА ЭЛЕКТРОФЛОТАЦИОННЫЙ ПРОЦЕСС ИЗВЛЕЧЕНИЯ …
2017
[28] ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ МЕЖФАЗНЫХ ЯВЛЕНИЙ НА ИННОВАЦИОННЫХ УГЛЕРОДНЫХ НАНОМАТЕРИАЛАХ В ВОДНЫХ РАСТВОРАХ …
2017
[29] Сорбционные характеристики углеродных наноматериалов по отношению к ионам Cu2+, Ni2+, Zn2+, Co2+, Fe2+
2016
[30] Amino phosphate on the surface of nanotitania as attractive group to improve the adsorptive properties for lanthanides removal: adsorption, kinetic, equilibrium, and …
Phase Transitions, 2016
[31] Low cost biosorbent (Lemna gibba L.) for the removal of phenol from aqueous media
2016
[32] Studying the efficiency of an electroflotation process for the extraction of low-soluble scandium compounds from aqueous media in the presence of surfactants
Theoretical Foundations of Chemical Engineering, 2016
[33] СОРБЦИОННЫЕ ХАРАКТЕРИСТИКИ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ ПО
2016
[34] Electrospinning: Polymer nanofibre adsorbent applications for metal ion removal
Journal of Polymers and the Environment, 2016
[35] Sorption of inorganic salts on carbon nanomaterials and magnetite
Russian Journal of Physical Chemistry A, 2016
[36] ЭЛЕКТРОФЛОТАЦИОННОЕ ИЗВЛЕЧЕНИЕ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ В РАСТВОРАХ ЭЛЕКТРОЛИТОВ В ПРИСУТСТВИИ ПАВ И КОАГУЛЯНТОВ
2016
[37] Исследование эффективности электрофлотационного процесса извлечения труднорастворимых соединений скандия из водных сред в …
2016
[38] Sorption of La (III) and Ce (III) by oxidized carbon nanotubes
Russian Journal of Physical Chemistry A, 2016
[39] Сорбция La (III) и Ce (III) окисленными углеродными нанотрубками
2016
[40] Amino phosphate on the surface of nanotitania as attractive group to improve the adsorptive properties for lanthanides removal: adsorption, kinetic, equilibrium, and …
Desalination and Water Treatment, 2016
[41] Сорбция неорганических солей из растворов на углеродных наноматериалах и магнетите
2016
[42] ПРИМЕНЕНИЕ ЭЛЕКТРОФЛОТАЦИОННОЙ ТЕХНОЛОГИИ ДЛЯ ИЗВЛЕЧЕНИЯ ТРУДНОРАСТВОРИМЫХ СОЕДИНЕНИЙ РЕДКОЗЕМЕЛЬНЫХ …
2016
[43] Low cost biosorbent (Lemnagibba L.) for the removal of phenol from aqueous media
2016
[44] Основные закономерности электрофлотационного извлечения скандия (III) из технологических растворов
2015
[45] ОСОБЕННОСТИ ЭЛЕКТРОФЛОТАЦИОННОГО ИЗВЛЕЧЕНИЯ СКАНДИЯ (III) ИЗ ВОДНЫХ РАСТВОРОВ ЭЛЕКТРОЛИТОВ
2015
[46] АДСОРБЦИЯ ИОНОВ МЕДИ ИЗ ВОДНОГО РАСТВОРА С ИСПОЛЬЗОВАНИЕМ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ
2015
[47] ЭЛЕКТРОФЛОТАЦИОННОЕ ИЗВЛЕЧЕНИЕ ЛАНТАНА (III) ИЗ ВОДНЫХ СРЕД
2015
[48] Электрофлотационное извлечение меди из водных сред
2015
Free SCIRP Newsletters
Copyright © 2006-2024 Scientific Research Publishing Inc. All Rights Reserved.
Top