[1]
|
Exploration of spray pyrolysis technique in preparation of absorber material CFATS: Unprecedented hydrophilic surface and antibacterial properties
Arabian Journal of Chemistry,
2022
DOI:10.1016/j.arabjc.2022.103894
|
|
|
[2]
|
Influence of metallic species for efficient photocatalytic water disinfection: bactericidal mechanism of in vitro results using docking simulation
Environmental Science and Pollution Research,
2020
DOI:10.1007/s11356-020-08974-z
|
|
|
[3]
|
An Ag-loaded photoactive nano-metal organic framework as a promising biofilm treatment
Acta Biomaterialia,
2019
DOI:10.1016/j.actbio.2019.08.011
|
|
|
[4]
|
Influence of process variables on the kinetic parameters of a Langmuir-Hinshelwood expression for E.coli inactivation during the photocatalytic disinfection of water
Separation Science and Technology,
2019
DOI:10.1080/01496395.2019.1676784
|
|
|
[5]
|
Production of Composite ZrO2-ZnO Nanoparticles Using Advanced Co-precipitation Process and Determination Their Photo-oxidative Properties by Oxidation of C60 Fullerene
2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP),
2018
DOI:10.1109/NAP.2018.8914836
|
|
|
[6]
|
Titanium dioxide (TiO 2 ) photocatalysis technology for nonthermal inactivation of microorganisms in foods
Trends in Food Science & Technology,
2018
DOI:10.1016/j.tifs.2018.02.018
|
|
|
[7]
|
Material Formulations for AR/PMMA and AR-TiO2/PMMA Blends and Effects of UV Radiation and Tio2 Loading on Mechanical and Antibacterial Performances
Polymer-Plastics Technology and Engineering,
2018
DOI:10.1080/03602559.2018.1447131
|
|
|
[8]
|
Effect of calcination temperature on the microstructure and electronic properties of TiO2–ZnO nanocomposites and implications on photocatalytic activity
Applied Nanoscience,
2018
DOI:10.1007/s13204-018-0783-z
|
|
|
[9]
|
A comprehensive review on the use of second generation TiO 2 photocatalysts: Microorganism inactivation
Chemosphere,
2018
DOI:10.1016/j.chemosphere.2018.07.121
|
|
|
[10]
|
UV-C/H2O2 heterogeneous photocatalytic inactivation of coliforms in municipal wastewater in a TiO2/SiO2 fixed bed reactor: a kinetic and statistical approach
Reaction Kinetics, Mechanisms and Catalysis,
2018
DOI:10.1007/s11144-018-1473-2
|
|
|
[11]
|
Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles
Materials Science and Engineering: C,
2018
DOI:10.1016/j.msec.2018.08.060
|
|
|
[12]
|
Antifouling and anti-algal effects of chitosan nanocomposite (TiO2/Ag) and pristine (TiO2 and Ag) films on marine microalgae Dunaliella salina
Journal of Environmental Chemical Engineering,
2018
DOI:10.1016/j.jece.2018.10.050
|
|
|
[13]
|
Disinfection of Multidrug Resistant Escherichia coli by Solar-Photocatalysis using Fe-doped ZnO Nanoparticles
Scientific Reports,
2017
DOI:10.1038/s41598-017-00173-0
|
|
|
[14]
|
Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO 2 , ZnO and ruthenium based complexes in a continuous flow system
Journal of Photochemistry and Photobiology B: Biology,
2017
DOI:10.1016/j.jphotobiol.2017.03.027
|
|
|
[15]
|
Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO 2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida
Journal of Hazardous Materials,
2017
DOI:10.1016/j.jhazmat.2017.07.005
|
|
|
[16]
|
Generation and Detection of Reactive Oxygen Species in Photocatalysis
Chemical Reviews,
2017
DOI:10.1021/acs.chemrev.7b00161
|
|
|
[17]
|
Disinfection of Multidrug Resistant Escherichia coli by Solar-Photocatalysis using Fe-doped ZnO Nanoparticles
Scientific Reports,
2017
DOI:10.1038/s41598-017-00173-0
|
|
|
[18]
|
Characterization of antimicrobial efficacy of photocatalytic polymers against food-borne biofilms
LWT - Food Science and Technology,
2016
DOI:10.1016/j.lwt.2015.11.063
|
|
|
[19]
|
Photo-catalytic inactivation of anEnterococcusbiofilm: the anti-microbial effect of sulphated and europium-doped titanium dioxide nanopowders
FEMS Microbiology Letters,
2016
DOI:10.1093/femsle/fnw051
|
|
|
[20]
|
Modification of graphene oxide by laser irradiation: a new route to enhance antibacterial activity
Nanotechnology,
2016
DOI:10.1088/0957-4484/27/24/245704
|
|
|
[21]
|
Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa
Microbiology,
2016
DOI:10.1099/mic.0.000268
|
|
|
[22]
|
Long-term exposure of bacterial and protozoan communities to TiO2nanoparticles in an aerobic-sequencing batch reactor
Science and Technology of Advanced Materials,
2015
DOI:10.1088/1468-6996/16/3/034609
|
|
|
[23]
|
Photocatalysis induces bioactivity of an organic polymer based material
RSC Adv.,
2014
DOI:10.1039/C4RA08805K
|
|
|
[24]
|
Silver Nanoparticles Supported on TiO2 and Their Antibacterial Properties: Effect of Surface Confinement and Nonexistence of Plasmon Resonance
Materials Sciences and Applications,
2014
DOI:10.4236/msa.2014.512091
|
|
|