[1]
|
The effect of different drying methods and microalgae species on the quality parameters of biodiesel obtained by transesterification technique
Biomass and Bioenergy,
2023
DOI:10.1016/j.biombioe.2022.106688
|
|
|
[2]
|
Neural-Network-Inspired Correlation (N2IC) Model for Estimating Biodiesel Conversion in Algal Biodiesel Units
Fermentation,
2023
DOI:10.3390/fermentation9010047
|
|
|
[3]
|
The effect of different drying methods and microalgae species on the quality parameters of biodiesel obtained by transesterification technique
Biomass and Bioenergy,
2023
DOI:10.1016/j.biombioe.2022.106688
|
|
|
[4]
|
Usage of source separated urine for the biodiesel production from algal biomass
Biochemical Engineering Journal,
2022
DOI:10.1016/j.bej.2022.108692
|
|
|
[5]
|
Enhancing growth environment for attached microalgae to populate onto spent coffee grounds in producing biodiesel
Renewable and Sustainable Energy Reviews,
2022
DOI:10.1016/j.rser.2022.112940
|
|
|
[6]
|
Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation
2022
DOI:10.1007/978-3-031-08830-8_8
|
|
|
[7]
|
An Integration of Phycoremediation Processes in Wastewater Treatment
2022
DOI:10.1016/B978-0-12-823499-0.00019-5
|
|
|
[8]
|
Microbial Biodegradation and Bioremediation
2022
DOI:10.1016/B978-0-323-85455-9.00002-3
|
|
|
[9]
|
Waste rubber seeds as a renewable energy source: direct biodiesel production using a controlled crushing device
RSC Advances,
2022
DOI:10.1039/D1RA08298A
|
|
|
[10]
|
Feedstocks, catalysts, process variables and techniques for biodiesel production by one-pot extraction-transesterification: a review
Environmental Chemistry Letters,
2022
DOI:10.1007/s10311-021-01358-w
|
|
|
[11]
|
Optimization of Auxenochlorella protothecoides lipid content using response surface methodology for biofuel production
Biomass Conversion and Biorefinery,
2022
DOI:10.1007/s13399-020-00798-8
|
|
|
[12]
|
Micro-algae: Next-generation Feedstock for Biorefineries
Clean Energy Production Technologies,
2022
DOI:10.1007/978-981-19-0793-7_3
|
|
|
[13]
|
Enhancing growth environment for attached microalgae to populate onto spent coffee grounds in producing biodiesel
Renewable and Sustainable Energy Reviews,
2022
DOI:10.1016/j.rser.2022.112940
|
|
|
[14]
|
Usage of source separated urine for the biodiesel production from algal biomass
Biochemical Engineering Journal,
2022
DOI:10.1016/j.bej.2022.108692
|
|
|
[15]
|
Catalytic performance of MgO /Fe2O3-SiO2 core-shell magnetic nanocatalyst for biodiesel production of Camelina sativa seed oil: Optimization by RSM-CCD method
Industrial Crops and Products,
2021
DOI:10.1016/j.indcrop.2020.113065
|
|
|
[16]
|
Illumination system for growth and net energy ratio enhancement of Arthrospira (Spirulina) platensis outdoor cultivation in deep raceway pond
Bioresource Technology Reports,
2021
DOI:10.1016/j.biteb.2021.100661
|
|
|
[17]
|
Bio#Futures
2021
DOI:10.1007/978-3-030-64969-2_21
|
|
|
[18]
|
Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery
3 Biotech,
2021
DOI:10.1007/s13205-021-02911-8
|
|
|
[19]
|
Effect of variation in injector nozzle holes on the performance of preheated Spirulina methyl ester used in VCR engine
Materials Today: Proceedings,
2021
DOI:10.1016/j.matpr.2020.08.270
|
|
|
[20]
|
Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery
3 Biotech,
2021
DOI:10.1007/s13205-021-02911-8
|
|
|
[21]
|
Effect of variation in injector nozzle holes on the performance of preheated Spirulina methyl ester used in VCR engine
Materials Today: Proceedings,
2021
DOI:10.1016/j.matpr.2020.08.270
|
|
|
[22]
|
Green Sustainable Process for Chemical and Environmental Engineering and Science
2021
DOI:10.1016/B978-0-12-819848-3.00014-1
|
|
|
[23]
|
Spirogyra Oil-Based Biodiesel: Response Surface Optimization of Chemical and Enzymatic Transesterification and Exhaust Emission Behavior
Catalysts,
2020
DOI:10.3390/catal10101214
|
|
|
[24]
|
Effect of different iron sources on sustainable microalgae-based biodiesel production using Auxenochlorella protothecoides
Renewable Energy,
2020
DOI:10.1016/j.renene.2020.09.030
|
|
|
[25]
|
Bioremediation of Industrial Waste for Environmental Safety
2020
DOI:10.1007/978-981-13-3426-9_12
|
|
|
[26]
|
Mutual effect of sodium and magnesium on the cultivation of microalgae Auxenochlorella protothecoides
Biomass and Bioenergy,
2020
DOI:10.1016/j.biombioe.2019.105441
|
|
|
[27]
|
Effect of iron and magnesium addition on population dynamics and high value product of microalgae grown in anaerobic liquid digestate
Scientific Reports,
2020
DOI:10.1038/s41598-020-60622-1
|
|
|
[28]
|
Effect of salinity on mixed microalgae grown in anaerobic liquid digestate
Water and Environment Journal,
2020
DOI:10.1111/wej.12580
|
|
|
[29]
|
Microalgae‐based biodiesel production in open raceway ponds using coal thermal flue gas: A case of West Bengal, India
Environmental Quality Management,
2020
DOI:10.1002/tqem.21677
|
|
|
[30]
|
Advancing biodiesel production from microalgae Spirulina sp. by a simultaneous extraction–transesterification process using palm oil as a co-solvent of methanol
Open Chemistry,
2020
DOI:10.1515/chem-2020-0133
|
|
|
[31]
|
Sol–Gel Entrapped Lewis Acids as Catalysts for Biodiesel Production
Molecules,
2020
DOI:10.3390/molecules25245936
|
|
|
[32]
|
Effect of iron and magnesium addition on population dynamics and high value product of microalgae grown in anaerobic liquid digestate
Scientific Reports,
2020
DOI:10.1038/s41598-020-60622-1
|
|
|
[33]
|
Biodiesel Production from Microalgal Oil Using Barium–Calcium–Zinc Mixed Oxide Base Catalyst: Optimization and Kinetic Studies
Energy & Fuels,
2019
DOI:10.1021/acs.energyfuels.8b03461
|
|
|
[34]
|
Techno-economic Feasibility of Reactive Distillation for Biodiesel Production from Algal Oil: Comparing with a Conventional Multiunit System
Industrial & Engineering Chemistry Research,
2019
DOI:10.1021/acs.iecr.9b00347
|
|
|
[35]
|
Algal Biofuels: Current Status and Key Challenges
Energies,
2019
DOI:10.3390/en12101920
|
|
|
[36]
|
Bismuth vanadate: an efficient photocatalyst for rupturing of microalgae cell wall
Materials Research Express,
2019
DOI:10.1088/2053-1591/ab1aed
|
|
|
[37]
|
Influence of nutrient formulations on growth, lipid yield, carbon partitioning and biodiesel quality potential of Botryococcus sp. and Chlorella sp.
Environmental Science and Pollution Research,
2019
DOI:10.1007/s11356-019-04213-2
|
|
|
[38]
|
Biodiesel Potentiality of Microalgae Species: evaluation Using Various Nitrogen Sources
Waste and Biomass Valorization,
2019
DOI:10.1007/s12649-018-00552-2
|
|
|
[39]
|
Evaluation of Various Lipid Extraction Techniques for Microalgae and Their Effect on Biochemical Components
Waste and Biomass Valorization,
2019
DOI:10.1007/s12649-019-00601-4
|
|
|
[40]
|
Lipid Extraction from Microalgae Spirulina Platensis for Raw Materials of Biodiesel
Journal of Physics: Conference Series,
2019
DOI:10.1088/1742-6596/1167/1/012051
|
|
|
[41]
|
Improvement of lipid yield from microalgae Spirulina platensis using ultrasound assisted osmotic shock extraction method
IOP Conference Series: Earth and Environmental Science,
2018
DOI:10.1088/1755-1315/102/1/012012
|
|
|
[42]
|
Supercritical transesterification of microalgae triglycerides for biodiesel production: Effect of alcohol type and co-solvent
The Journal of Supercritical Fluids,
2018
DOI:10.1016/j.supflu.2018.03.008
|
|
|
[43]
|
Response surface optimization of lipid and protein extractions from Spirulina platensis using ultrasound assisted osmotic shock method
Food Science and Biotechnology,
2018
DOI:10.1007/s10068-018-0389-y
|
|
|
[44]
|
Microbial Resource Conservation
Soil Biology,
2018
DOI:10.1007/978-3-319-96971-8_12
|
|
|
[45]
|
Sustainable Energy Technology and Policies
Green Energy and Technology,
2018
DOI:10.1007/978-981-10-7188-1_10
|
|
|
[46]
|
Biodiesel production from microalgae grown on domestic wastewater: Feasibility and Egyptian case study
Renewable and Sustainable Energy Reviews,
2018
DOI:10.1016/j.rser.2017.05.073
|
|
|
[47]
|
Advances in Biofeedstocks and Biofuels
2017
DOI:10.1002/9781119117551.ch5
|
|
|
[48]
|
A review on single stage integrated dark-photo fermentative biohydrogen production: Insight into salient strategies and scopes
International Journal of Hydrogen Energy,
2017
DOI:10.1016/j.ijhydene.2017.12.018
|
|
|
[49]
|
Effect of Soaking Pre-Treatment on Reactive Extraction/in situ Transesterification of Nannochloropsis occulata for Biodiesel Production
Journal of Sustainable Bioenergy Systems,
2017
DOI:10.4236/jsbs.2017.74011
|
|
|
[50]
|
Biodiesel and biogas recovery from Spirulina platensis
International Biodeterioration & Biodegradation,
2017
DOI:10.1016/j.ibiod.2016.11.006
|
|
|
[51]
|
Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity
Environmental Technology,
2017
DOI:10.1080/09593330.2016.1254685
|
|
|
[52]
|
Extraction of biomolecules from Spirulina platensis using non-conventional processes and harmless solvents
Journal of Environmental Chemical Engineering,
2017
DOI:10.1016/j.jece.2017.04.008
|
|
|
[53]
|
Obtaining biodiesel from microalgae oil using ultrasound-assisted in-situ alkaline transesterification
Fuel,
2017
DOI:10.1016/j.fuel.2017.04.040
|
|
|
[54]
|
Biodiesel production from microalgae grown on domestic wastewater: Feasibility and Egyptian case study
Renewable and Sustainable Energy Reviews,
2017
DOI:10.1016/j.rser.2017.05.073
|
|
|
[55]
|
Biodiesel production process optimization from Spirulina maxima microalgae and performance investigation in a diesel engine
Journal of Mechanical Science and Technology,
2017
DOI:10.1007/s12206-017-0546-x
|
|
|
[56]
|
Meat processing dissolved air flotation sludge as a potential biodiesel feedstock in New Zealand: A predictive analysis of the biodiesel product properties
Journal of Cleaner Production,
2017
DOI:10.1016/j.jclepro.2017.09.128
|
|
|
[57]
|
Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing
Chinese Journal of Chemical Engineering,
2017
DOI:10.1016/j.cjche.2017.08.010
|
|
|
[58]
|
Biodiesel from Microalgae
SAE Technical Paper Series,
2017
DOI:10.4271/2017-26-0077
|
|
|
[59]
|
Molecular Diversity of Environmental Prokaryotes
2016
DOI:10.1201/9781315381909-16
|
|
|
[60]
|
Opportunities for simultaneous oil extraction and transesterification during biodiesel fuel production from microalgae: A review
Fuel Processing Technology,
2016
DOI:10.1016/j.fuproc.2016.05.002
|
|
|
[61]
|
In Situ Transesterification of Wet Marine and Fresh Water Microalgae for Biodiesel Production and Its Effect on the Algal Residue
Journal of Sustainable Bioenergy Systems,
2016
DOI:10.4236/jsbs.2016.62003
|
|
|
[62]
|
Investigation of silicates as a catalyst in biodiesel production: A review
International Journal of Energy Research,
2016
DOI:10.1002/er.3546
|
|
|
[63]
|
A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review
Renewable and Sustainable Energy Reviews,
2016
DOI:10.1016/j.rser.2016.07.068
|
|
|
[64]
|
Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation
Environmental Engineering Science,
2016
DOI:10.1089/ees.2016.0132
|
|
|
[65]
|
Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux
Bioresource Technology,
2015
DOI:10.1016/j.biortech.2015.01.047
|
|
|
[66]
|
Pretreatment of Biomass
2015
DOI:10.1016/B978-0-12-800080-9.00012-8
|
|
|
[67]
|
Handbook of Marine Microalgae
2015
DOI:10.1016/B978-0-12-800776-1.00031-5
|
|
|
[68]
|
Homogeneous acid catalysed transesterification of marine microalga Chlorella sp. BDUG 91771 lipid – An efficient biodiesel yield and its characterization
Renewable Energy,
2015
DOI:10.1016/j.renene.2015.03.059
|
|
|
[69]
|
Utilization of Scenedesmus obliquus biomass as feedstock for biodiesel and other industrially important co-products: An integrated paradigm for microalgal biorefinery
Algal Research,
2015
DOI:10.1016/j.algal.2015.09.009
|
|
|
[70]
|
Utilization of Scenedesmus obliquus biomass as feedstock for biodiesel and other industrially important co-products: An integrated paradigm for microalgal biorefinery
Algal Research,
2015
DOI:10.1016/j.algal.2015.09.009
|
|
|
[71]
|
Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review
Renewable and Sustainable Energy Reviews,
2015
DOI:10.1016/j.rser.2015.08.030
|
|
|