[1]
|
Combined Use of Landsat 8 and Sentinel 2A Imagery for Improved Sugarcane Yield Estimation in Wonji-Shoa, Ethiopia
Journal of the Indian Society of Remote Sensing,
2022
DOI:10.1007/s12524-021-01466-8
|
|
|
[2]
|
A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops
Remote Sensing Applications: Society and Environment,
2022
DOI:10.1016/j.rsase.2022.100712
|
|
|
[3]
|
Integration of RGB-based vegetation index, crop surface model and object-based image analysis approach for sugarcane yield estimation using unmanned aerial vehicle
Computers and Electronics in Agriculture,
2021
DOI:10.1016/j.compag.2020.105903
|
|
|
[4]
|
Remote Sensing Applications in Sugarcane Cultivation: A Review
Remote Sensing,
2021
DOI:10.3390/rs13204040
|
|
|
[5]
|
Machine Learning Models to Estimate the Sugarcane Brix Values from Multitemporal Vegetation Indices
2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM),
2020
DOI:10.1109/ICCAKM46823.2020.9051545
|
|
|
[6]
|
Evaluation of sum-NDVI values to estimate wheat grain yields using multi-temporal Landsat OLI data
Geocarto International,
2019
DOI:10.1080/10106049.2019.1641561
|
|
|
[7]
|
Pre-harvest Sugarcane Yield Estimation Using UAV-Based RGB Images and Ground Observation
Sugar Tech,
2018
DOI:10.1007/s12355-018-0601-7
|
|
|
[8]
|
When do I want to know and why? Different demands on sugarcane yield predictions
Agricultural Systems,
2015
DOI:10.1016/j.agsy.2014.11.008
|
|
|