[1]
|
Capillarity-promoted laser re-sintering of printed semisolid Cu nanoparticles for facile fabrication of conductive patterns with voidless structure and improved conductivity
Journal of Materials Research and Technology,
2022
DOI:10.1016/j.jmrt.2022.03.154
|
|
|
[2]
|
Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review
Materials,
2022
DOI:10.3390/ma15176006
|
|
|
[3]
|
Direct Writing of Cu Patterns on Polydimethylsiloxane Substrates Using Femtosecond Laser Pulse-Induced Reduction of Glyoxylic Acid Copper Complex
Micromachines,
2021
DOI:10.3390/mi12050493
|
|
|
[4]
|
Cu Patterning Using Femtosecond Laser Reductive Sintering of CuO Nanoparticles under Inert Gas Injection
Materials,
2021
DOI:10.3390/ma14123285
|
|
|
[5]
|
Understanding the sintering and heat dissipation behaviours of Cu nanoparticles during low-temperature selective laser sintering process on flexible substrates
Journal of Physics D: Applied Physics,
2021
DOI:10.1088/1361-6463/ac0d73
|
|
|
[6]
|
The rise of conductive copper inks: challenges and perspectives
Applied Materials Today,
2020
DOI:10.1016/j.apmt.2019.100451
|
|
|
[7]
|
Fabrication of Cu Wiring Touch Sensor via Laser Sintering of Cu Nano/Microparticle Paste on 3D‐Printed Substrate
Advanced Engineering Materials,
2020
DOI:10.1002/adem.202000688
|
|
|
[8]
|
Laser Micro-Nano-Manufacturing and 3D Microprinting
Springer Series in Materials Science,
2020
DOI:10.1007/978-3-030-59313-1_9
|
|
|
[9]
|
Intense pulse light sintering of an Ag microparticle-based, highly stretchable, and conductive electrode
Microelectronic Engineering,
2019
DOI:10.1016/j.mee.2019.111012
|
|
|
[10]
|
Copper micro-electrode fabrication using laser printing and laser sintering processes for on-chip antennas on flexible integrated circuits
Optical Materials Express,
2019
DOI:10.1364/OME.9.003046
|
|
|
[11]
|
Thermal, electrical and mechanical characterization of microwave sintered Copper/carbon nanotubes (CNT) composites against sintering duration, CNT diameter and its concentration
Journal of Materials Processing Technology,
2018
DOI:10.1016/j.jmatprotec.2018.04.010
|
|
|
[12]
|
Nanooptics, Nanophotonics, Nanostructures, and Their Applications
Springer Proceedings in Physics,
2018
DOI:10.1007/978-3-319-91083-3_23
|
|
|
[13]
|
Highly stretchable and conductive conductors based on Ag flakes and polyester composites
Microelectronic Engineering,
2018
DOI:10.1016/j.mee.2018.07.006
|
|
|
[14]
|
Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates
Materials,
2018
DOI:10.3390/ma11112142
|
|
|
[15]
|
Multi-pulsed flash light sintering of copper nanoparticle pastes on silicon wafer for highly-conductive copper electrodes in crystalline silicon solar cells
Applied Surface Science,
2018
DOI:10.1016/j.apsusc.2018.08.098
|
|
|
[16]
|
Homogeneous Surface Profiles of Inkjet-Printed Silver Nanoparticle Films by Regulating Their Drying Microenvironment
The Journal of Physical Chemistry C,
2017
DOI:10.1021/acs.jpcc.6b12793
|
|
|
[17]
|
Laser-Assisted Reduction of Highly Conductive Circuits Based on Copper Nitrate for Flexible Printed Sensors
Nano-Micro Letters,
2017
DOI:10.1007/s40820-017-0139-3
|
|
|
[18]
|
A benchmark study of commercially available copper nanoparticle inks for application in organic electronic devices
Organic Electronics,
2016
DOI:10.1016/j.orgel.2016.04.021
|
|
|
[19]
|
Laser curing of inkjet printed strain gauge structures
2016 MIXDES - 23rd International Conference Mixed Design of Integrated Circuits and Systems,
2016
DOI:10.1109/MIXDES.2016.7529761
|
|
|
[20]
|
Investigation of Different Sintering Methods on Ink-Jet-Printed Conductive Structures
Applied Mechanics and Materials,
2016
DOI:10.4028/www.scientific.net/AMM.856.217
|
|
|
[21]
|
All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink
Scientific Reports,
2016
DOI:10.1038/srep19696
|
|
|
[22]
|
All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink
Scientific Reports,
2016
DOI:10.1038/srep19696
|
|
|
[23]
|
Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers
Scientific Reports,
2015
DOI:10.1038/srep08832
|
|
|
[24]
|
Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility
ACS Nano,
2015
DOI:10.1021/acsnano.5b02704
|
|
|
[25]
|
Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics
Thin Solid Films,
2015
DOI:10.1016/j.tsf.2015.03.004
|
|
|
[26]
|
Copper micro and nano particles mixture for 3D interconnections application
2015 International 3D Systems Integration Conference (3DIC),
2015
DOI:10.1109/3DIC.2015.7334614
|
|
|
[27]
|
Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers
Scientific Reports,
2015
DOI:10.1038/srep08832
|
|
|
[28]
|
Characterization of Laser Sintering of Copper Nanoparticle Ink by FEM and Experimental Testing
IEEE Transactions on Components, Packaging and Manufacturing Technology,
2014
DOI:10.1109/TCPMT.2014.2363032
|
|
|
[29]
|
Inkjet printed nano-particle Cu process for fabrication of re-distribution layers on silicon wafer
2014 IEEE 64th Electronic Components and Technology Conference (ECTC),
2014
DOI:10.1109/ECTC.2014.6897523
|
|
|
[30]
|
Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics
Nanotechnology,
2014
DOI:10.1088/0957-4484/25/26/265601
|
|
|