International Journal of Intelligence Science

International Journal of Intelligence Science

ISSN Print: 2163-0283
ISSN Online: 2163-0356
www.scirp.org/journal/ijis
E-mail: ijis@scirp.org
"Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach"
written by Artemio Sotomayor-Olmedo, Marco A. Aceves-Fernández, Efrén Gorrostieta-Hurtado, Carlos Pedraza-Ortega, Juan M. Ramos-Arreguín, J. Emilio Vargas-Soto,
published by International Journal of Intelligence Science, Vol.3 No.3, 2013
has been cited by the following article(s):
  • Google Scholar
  • CrossRef
[1] Intelligent modeling strategies for forecasting air quality time series: A review
2021
[2] Pathway and Future of IoE in Smart Cities: Challenges of Big Data and Energy Sustainability
2021
[3] BOD5 Prediction Using machine learning methods
2021
[4] Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives
2021
[5] Air Quality Classification Using Support Vector Machine
2021
[6] The Environmental Story During the COVID-19 Lockdown: How Human Activities Affect PM2. 5 Concentration in China?
2020
[7] Chemometrics for environmental monitoring: a review
2020
[8] Source number estimation based on a novel multi-view meta-hierarchical classification framework
2020
[9] A Machine Learning Approach to Predict Air Quality in California
2020
[10] Propuesta de red neuronal convolutiva para la predicción de partículas contaminantes PM10.
2019
[11] An ensemble-based model of PM2. 5 concentration across the contiguous United States with high spatiotemporal resolution
2019
[12] Support Vector Machine (SVM) aggregation modelling for spatio-temporal air pollution analysis
2019
[13] Support vector regression for time-series: a machine learning approach to predict the air quality
2019
[14] Application of statistical techniques in environmental modelling
2019
[15] Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine Hybrid Model.
2019
[16] Predictive analytics of PM10 concentration levels using detailed traffic data
2019
[17] Air Pollution Prediction Using Machine Learning
2019
[18] Propuesta de red neuronal convolutiva para la predicción de partículas contaminantes PM10
2019
[19] The Hybrid Neural Networks-ARIMA/X Models and ANFIS Model for PM-10 Forecasting: A Case Study of Chiang Mai, Thailand's High Season
2018
[20] Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
2018
[21] The Forecasting Technique Using SSA-SVM Applied to Foreign Tourist Arrivals to Bali.
Telkomnika, 2018
[22] Improving air quality management using gradient boosting based hierarchical temporal memory neural networks and fuzzy based classification based …
2018
[23] The Forecasting Technique Using SSA-SVM Applied to Foreign Tourist Arrivals to Bali
2018
[24] Implementación de un modelo del comportamiento de los niveles de concentración de PM10 utilizando herramientas de aprendizaje de máquina en la ciudad …
2017
[25] Implementación de un modelo del comportamiento de los niveles de concentración de PM10 utilizando herramientas de aprendizaje de máquina en la ciudad de …
2017
[26] Classification trees and PM10 dynamics in Bogotá, Colombia
2017
[27] A spatio-temporal prediction model based on support vector machine regression: Ambient Black Carbon in three New England States
Environmental Research, 2017
[28] ONLINE SCALABLE SVM ENSEMBLE LEARNING METHOD (OSSELM) FOR SPATIO-TEMPORAL AIR POLLUTION ANALYSIS
International Journal of Data Mining & Knowledge Management Process, 2017
[29] Statistical Modeling Approaches for PM10 Prediction in Urban Areas; A Review of 21st-Century Studies
Atmosphere, 2016
[30] Using geosocial search for urban air pollution monitoring
Pervasive and Mobile Computing, 2016
[31] Statistical Modeling Approaches for PM10 Prediction in Urban Areas
2016
[32] Pervasive and Mobile Computing
2016
[33] Modelling atmospheric ozone concentration using machine learning algorithms
2016
[34] Enhancement of a Neuro-Fuzzy Models Using Ant Colony Optimization for the Prediction level of CO Pollution
2015
[35] Comparison of passive microwave brightness temperature prediction sensitivities over snow-covered land in North America using machine learning algorithms and …
Remote Sensing of Environment, 2015
[36] Comparison of passive microwave brightness temperature prediction sensitivities over snow-covered land in North America using machine learning algorithms and …
Remote Sensing of Environment, 2015
[37] Prediction models for ozone in metropolitan area of Mexico City based on artificial intelligence techniques
International Journal of Information and Decision Sciences, 2015
[38] Using wavelet–feedforward neural networks to improve air pollution forecasting in urban environments
Environmental monitoring and assessment, 2015
[39] Method to Improve Airborne Pollution Forecasting by Using Ant Colony Optimization and Neuro-Fuzzy Algorithms
International Journal of Intelligence Science, 2014
[40] DETECTING AIR POLLUTION FROM ARIYALUR METEOROLOGICAL DATA USING FUZZY CONTROLLED OPTIMIZED GENERATIVE DEEP LEARNING …
[41] Investigation of PM10 prediction utilizing data mining techniques: Analyze by topic
[42] Scuola di Dottorato Iuav in Architettura, Città e Design Nuove Tecnologie e Informazione per l'Architettura, la Città e il Territorio AA 2020/2021
Free SCIRP Newsletters
Copyright © 2006-2022 Scientific Research Publishing Inc. All Rights Reserved.
Top