[1]
|
Identification of Proteins Using Supramolecular Gold Nanoparticle‐Dye Sensor Arrays
Analysis & Sensing,
2023
DOI:10.1002/anse.202200080
|
|
|
[2]
|
Metal-Enhanced Fluorescence for Alpha-Fetoprotein Detection and for SERS Using Hybrid Nanoparticles of Magnetic Cluster Core—Plasmonic Shell Composite
Chemosensors,
2023
DOI:10.3390/chemosensors11010056
|
|
|
[3]
|
Copper II Complexes Based on Benzimidazole Ligands as a Novel Photoredox Catalysis for Free Radical Polymerization Embedded Gold and Silver Nanoparticles
Polymers,
2023
DOI:10.3390/polym15051289
|
|
|
[4]
|
A fluorescence immunosensor for ochratoxin A based on resonance energy transfer between fluorescein derivative and gold nanoparticles
Journal of Food Composition and Analysis,
2022
DOI:10.1016/j.jfca.2022.104806
|
|
|
[5]
|
Carbazole-decorated fluorescent CdS quantum dots: A potential light-harvesting material
Journal of Physics and Chemistry of Solids,
2022
DOI:10.1016/j.jpcs.2022.110603
|
|
|
[6]
|
Transformation of an Aqueous Micellar Phase to a Bilayer of Gemini Surfactants on Gold Nanoparticles: A Steady-State and Time-Resolved Fluorescence and Fluorescence Anisotropy Study by Tuning the Precise Locations of Probes
The Journal of Physical Chemistry C,
2022
DOI:10.1021/acs.jpcc.1c09892
|
|
|
[7]
|
A fluorescence immunosensor for ochratoxin A based on resonance energy transfer between fluorescein derivative and gold nanoparticles
Journal of Food Composition and Analysis,
2022
DOI:10.1016/j.jfca.2022.104806
|
|
|
[8]
|
Highly selective histamine assay via SERS: Based on the signal enhancement of carbon dots and the fluorescence quenching of gold nanoparticles
Sensors and Actuators B: Chemical,
2022
DOI:10.1016/j.snb.2021.130866
|
|
|
[9]
|
Mitigating the toxicity of palmitoylated analogue of α-melanocyte stimulating hormone(11–13) by conjugation with gold nanoparticle: characterisation and antibacterial efficacy against methicillin sensitive and resistant Staphylococccus aureus
World Journal of Microbiology and Biotechnology,
2022
DOI:10.1007/s11274-022-03365-7
|
|
|
[10]
|
A fluorescence immunosensor for ochratoxin A based on resonance energy transfer between fluorescein derivative and gold nanoparticles
Journal of Food Composition and Analysis,
2022
DOI:10.1016/j.jfca.2022.104806
|
|
|
[11]
|
Carbazole-decorated fluorescent CdS quantum dots: A potential light-harvesting material
Journal of Physics and Chemistry of Solids,
2022
DOI:10.1016/j.jpcs.2022.110603
|
|
|
[12]
|
Highly selective histamine assay via SERS: Based on the signal enhancement of carbon dots and the fluorescence quenching of gold nanoparticles
Sensors and Actuators B: Chemical,
2022
DOI:10.1016/j.snb.2021.130866
|
|
|
[13]
|
Coencapsulation of Carbon Dots and Gold Nanoparticles over Escherichia coli for Bacterium Assay by Surface-Enhanced Raman Scattering
ACS Applied Bio Materials,
2021
DOI:10.1021/acsabm.0c01154
|
|
|
[14]
|
Preliminary investigation of the surface activation of diposable screen printed carbon electrodes using synthesized gold nanoparticles
IOP Conference Series: Materials Science and Engineering,
2020
DOI:10.1088/1757-899X/805/1/012006
|
|
|
[15]
|
Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer
ACS Applied Bio Materials,
2020
DOI:10.1021/acsabm.0c00427
|
|
|
[16]
|
Self-Assembled Glycobis(acrylamide)-Stabilized Gold Nanoparticles for Fluorescent Turn-on Sensing of Lectin and Escherichia coli
ACS Applied Nano Materials,
2020
DOI:10.1021/acsanm.9b02127
|
|
|
[17]
|
Preparation of Curcubit[6]uril functionalized CuO Nanoparticles: A New Nanosensing Scheme Based on Fluorescence recovery after FRET for the Label Free Determination of Dopamine
ChemistrySelect,
2020
DOI:10.1002/slct.202000595
|
|
|
[18]
|
Colloids for Nanobiotechnology - Synthesis, Characterization and Potential Applications
Frontiers of Nanoscience,
2020
DOI:10.1016/B978-0-08-102828-5.00003-6
|
|
|
[19]
|
Switching between positive and negative movement near an air/water interface through lateral laser illumination
Applied Physics Letters,
2020
DOI:10.1063/5.0015247
|
|
|
[20]
|
Enantiomeric MOF Crystals Using Helical Channels as Palettes with Bright White Circularly Polarized Luminescence
Advanced Materials,
2020
DOI:10.1002/adma.202002914
|
|
|
[21]
|
Novel Copper Photoredox Catalysts for Polymerization: An In Situ Synthesis of Metal Nanoparticles
Polymers,
2020
DOI:10.3390/polym12102293
|
|
|
[22]
|
Multiple plasmon resonances in small-sized citrate reduced gold nanoparticles
Materials Chemistry and Physics,
2019
DOI:10.1016/j.matchemphys.2019.05.077
|
|
|
[23]
|
Development of a Cuvette-Based LSPR Sensor Chip Using a Plasmonically Active Transparent Strip
Frontiers in Bioengineering and Biotechnology,
2019
DOI:10.3389/fbioe.2019.00299
|
|
|
[24]
|
A Variety of Bio-nanogold in the Fabrication of Lateral Flow Biosensors for the Detection of Pathogenic Bacteria
Current Topics in Medicinal Chemistry,
2019
DOI:10.2174/1568026619666191023125020
|
|
|
[25]
|
Aqueous Carbon Quantum Dot-Embedded PC60-PC61BM Nanospheres for Ecological Fluorescent Printing: Contrasting Fluorescence Resonance Energy-Transfer Signals between Watermelon-like and Random Morphologies
The Journal of Physical Chemistry Letters,
2019
DOI:10.1021/acs.jpclett.9b02426
|
|
|
[26]
|
Highly sensitive MicroRNA 146a detection using a gold nanoparticle–based CTG repeat probing system and isothermal amplification
Analytica Chimica Acta,
2018
DOI:10.1016/j.aca.2017.11.016
|
|
|
[27]
|
Development of optical sensing probe for Hg(II) ions detection in ground water using Au, Hexanedithiol and Rhodamine B nanocomposite system
Sensors and Actuators B: Chemical,
2018
DOI:10.1016/j.snb.2018.03.095
|
|
|
[28]
|
Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles
Microchimica Acta,
2018
DOI:10.1007/s00604-018-2825-3
|
|
|
[29]
|
Nanosensing of ATP by fluorescence recovery after surface energy transfer between rhodamine B and curcubit[7]uril-capped gold nanoparticles
Microchimica Acta,
2018
DOI:10.1007/s00604-018-2901-8
|
|
|
[30]
|
Spectral dependence of plasmon-enhanced fluorescence in a hollow nanotriangle assembled by DNA origami: towards plasmon assisted energy transfer
Nanoscale,
2018
DOI:10.1039/C8NR04426K
|
|
|
[31]
|
Harnessing carbazole based small molecules for the synthesis of the fluorescent gold nanoparticles: A unified experimental and theoretical approach to understand the mechanism of synthesis
Colloids and Surfaces B: Biointerfaces,
2018
DOI:10.1016/j.colsurfb.2018.08.056
|
|
|
[32]
|
Solvatochromism of a highly conjugated novel donor-π-acceptor dipolar fluorescent probe and its application in surface-energy transfer with gold nanoparticles
Journal of Molecular Liquids,
2018
DOI:10.1016/j.molliq.2018.08.107
|
|
|
[33]
|
Quenching of Luminol Fluorescence at Nano-Bio Interface: Towards the Development of an Efficient Energy Transfer System
Journal of Fluorescence,
2018
DOI:10.1007/s10895-018-2324-2
|
|
|
[34]
|
Synthesis and investigation of dual pH- and temperature-responsive behaviour of poly[2-(dimethylamino)ethyl methacrylate]-grafted gold nanoparticles
Applied Organometallic Chemistry,
2017
DOI:10.1002/aoc.3702
|
|
|
[35]
|
Plasmonic nanoparticles in chemical analysis
RSC Adv.,
2017
DOI:10.1039/C7RA01034F
|
|
|
[36]
|
Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin
Colloids and Surfaces B: Biointerfaces,
2017
DOI:10.1016/j.colsurfb.2017.04.029
|
|
|
[37]
|
Spectral selective and photothermal nano structured thin films for energy efficient windows
Applied Energy,
2017
DOI:10.1016/j.apenergy.2017.10.066
|
|
|
[38]
|
Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications
Biosensors and Bioelectronics,
2016
DOI:10.1016/j.bios.2016.02.015
|
|
|
[39]
|
Effect of gold nanoparticles on the optical properties of Rhodamine 6G
The European Physical Journal D,
2016
DOI:10.1140/epjd/e2016-70088-6
|
|
|
[40]
|
High sensitivity of gold nanoparticles co-doped with Gd2O3 mesoporous silica nanocomposite to nasopharyngeal carcinoma cells
Scientific Reports,
2016
DOI:10.1038/srep34367
|
|
|
[41]
|
Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles
Light: Science & Applications,
2016
DOI:10.1038/lsa.2016.164
|
|
|
[42]
|
Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing
RSC Adv.,
2016
DOI:10.1039/C6RA18760A
|
|
|
[43]
|
Resonant excitation energy transfer from carbon dots to different sized silver nanoparticles
Phys. Chem. Chem. Phys.,
2016
DOI:10.1039/C6CP05451J
|
|
|
[44]
|
Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch
ACS Nano,
2016
DOI:10.1021/acsnano.6b06635
|
|
|
[45]
|
In vivo sensing of proteolytic activity with an NSET-based NIR fluorogenic nanosensor
Biosensors and Bioelectronics,
2016
DOI:10.1016/j.bios.2015.09.067
|
|
|
[46]
|
High sensitivity of gold nanoparticles co-doped with Gd2O3 mesoporous silica nanocomposite to nasopharyngeal carcinoma cells
Scientific Reports,
2016
DOI:10.1038/srep34367
|
|
|
[47]
|
Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles
Light: Science & Applications,
2016
DOI:10.1038/lsa.2016.164
|
|
|
[48]
|
Smart nanoprobes for the detection of alkaline phosphatase activity during osteoblast differentiation
Chem. Commun.,
2015
DOI:10.1039/C4CC09620G
|
|
|
[49]
|
Biopolymer Stabilized Nanogold Particles on Carbon Nanotube Support as Sensing Platform for Electrochemical Detection of 5-Fluorouracil in-vitro
Electrochimica Acta,
2015
DOI:10.1016/j.electacta.2015.08.036
|
|
|
[50]
|
Plasmonic Lipid Bilayer Membranes for Enhanced Detection Sensitivity of Biolabeling Fluorophores
Advanced Functional Materials,
2015
DOI:10.1002/adfm.201502153
|
|
|
[51]
|
Using the Thickness of Graphene to Template Lateral Subnanometer Gaps between Gold Nanostructures
Nano Letters,
2015
DOI:10.1021/nl504121w
|
|
|
[52]
|
Water-soluble gold/polyaniline core/shell nanocomposite: Synthesis and characterization
Synthetic Metals,
2014
DOI:10.1016/j.synthmet.2014.05.012
|
|
|
[53]
|
Leaving Förster Resonance Energy Transfer Behind: Nanometal Surface Energy Transfer Predicts the Size-Enhanced Energy Coupling between a Metal Nanoparticle and an Emitting Dipole
The Journal of Physical Chemistry C,
2013
DOI:10.1021/jp407259r
|
|
|