"Using Artificial Neural Network to Estimate Sediment Load in Ungauged Catchments of the Tonle Sap River Basin, Cambodia"
written by Sokchhay Heng, Tadashi Suetsugi,
published by Journal of Water Resource and Protection, Vol.5 No.2, 2013
has been cited by the following article(s):
  • Google Scholar
  • CrossRef
[1] Enhancing Artificial Neural Network with Multi-Objective Evolutionary Algorithm for Optimizing Real Time Reservoir Operations: A Review
2020
[2] Suspended sediment yield modeling in Mahanadi River, India by multi-objective optimization hybridizing artifilacial intelligence algorithms
2020
[3] Sediment Transport Modelling in an alluvial river with Artificial Neural Network
2020
[4] Two decades on the artificial intelligence models advancement for modeling river sediment concentration: State-of-the-art
2020
[5] Sediment deposition and distribution modelling in reservoirs: current trends and prospects
2020
[6] Prediction of bed load sediments using different artificial neural network models
2020
[7] A Primer on Machine Learning Applications in Civil Engineering
2019
[8] Sedimentation Process and Its Assessment Through Integrated Sensor Networks and Machine Learning Process
Computational Intelligence in Sensor Networks, 2019
[9] Wavelet-Exponential Smoothing: a New Hybrid Method for Suspended Sediment Load Modeling
2019
[10] Multi-objective genetic algorithm optimization of artificial neural network for estimating suspended sediment yield in Mahanadi River basin, India
2019
[11] Estimating Suspended Sediment Load in Rivers Using the Imperialist Competitive Algorithm
2019
[12] The Use of Sediment Rating Curve under its Limitations to Estimate the Suspended Load
2019
[13] Suspended sediment estimation using regression and artificial neural network models: Kebir watershed, northeast of Algeria, North Africa
International Journal of Hydrology Science and Technology, 2018
[14] Simulating soil loss rate in Ekbatan Dam watershed using experimental and statistical approaches
International Journal of Sediment Research, 2018
[15] Suspended Sediment Concentration Modeling Using Conventional and Machine Learning Approaches in the Thames River, London Ontario
2018
[16] A regional suspended load yield estimation model for ungauged watersheds
2018
[17] Modeling of Suspended Sediment Concentration Using Conventional and Machine Learning Approaches, in Thames River, Canada
2018
[18] Predicting the Impacts of Various Factors on Failure Load of Screw Joints for Particleboard Using Artificial Neural Networks
2018
[19] Sedimentation Process and Its Assessment Through Integrated Sensor
2018
[20] Fluvial processes in motion: Measuring bank erosion and suspended sediment flux using advanced geomatic methods and machine learning
ProQuest Dissertations Publishing, 2018
[21] بررسی کارایی مدل‏ های هوشمند در برآورد رسوبات معلق رودخانه‏ ای (مطالعه موردی: حوزه‏ آبخیز باباامان، خراسان شمالی)‎
2017
[22] بررسی کارایی مدل‌های شبکه عصبی مصنوعی، نروفازی و رگرسیون چندمتغیره در شبیه‌سازی میزان رواناب و فرسایش با استفاده از باران‌ساز‎
2017
[23] Modelling reference evapotranspiration of Pantnagar using various training functions in artificial neural network
Thesis, 2017
[24] Tracing marine pollutants using magnetometer and artificial neutral network
2017
[25] The application of artificial neural networks to the problem of reservoir classification and land use determination on the basis of water sediment composition
Ecological Indicators, 2017
[26] CALIBRACIÓN DE LOS MODELOS DE PÉRDIDAS DE SUELO USLE Y MUSLE EN UNA CUENCA FORESTAL DE MÉXICO: CASO EL MALACATE
Agrociencia, 2017
[27] بررسی کارایی مدلهای هوشمند در برآورد رسوبات معلق رودخانهای (مطالعه موردی: حوزه آبخیز باباامان، خراسان شمالی)‎
2017
[28] The application of backpropagation neural network method to estimate the sediment loads
2017
[29] DATA MINING PROCESS FOR RIVER SUSPENDED SEDIMENT ESTIMATION
SDU International Journal of Technological Sciences, 2016
[30] Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction
Journal of Hydrology, 2016
[31] Flow and Sediment Prediction at Ungauged Basins Using Artificial Intelligence Models and Entropy Index
2016
[32] Event Runoff and Sediment-Yield Neural Network Models for Assessment and Design of Management Practices for Small Agricultural Watersheds
2016
[33] Estimating Suspended Sediment by Artificial Neural Network (ANN), Decision Trees (DT) and Sediment Rating Curve (SRC) Models (Case study: Lorestan Province, …
2015
[34] Estimating suspended sediment by Artificial Neural Network (ANN), Decision Trees (DT) and Sediment Rating Curve (SRC) models (Case study: Lorestan Province, Iran)(Technical Note)
Civil Engineering Infrastructures Journal, 2015
[35] Integrative neural networks model for prediction of sediment rating curve parameters for ungauged basins
Journal of Hydrology, 2015
[36] Development of sediment load estimation models by using artificial neural networking techniques
Environmental monitoring and assessment, 2015
[37] Comparison of two data-driven modelling techniques for long-term streamflow prediction using limited datasets
Journal of the South African Institution of Civil Engineering, 2015
[38] Estimation of suspended sediment yield flowing into Inanda Dam using genetic programming
2015
[39] شبیه سازی بار رسوبی معلق با استفاده از مدل تلفیقی عصبی-فازی با ترکیبات ورودی مختلف (مطالعه موردی: ایستگاه سیرا-سدکرج)‎
2015
[40] Development of a regional model for catchment-scale suspended sediment yield estimation in ungauged rivers of the Lower Mekong Basin
Geoderma, 2014
[41] Comparison of regionalization approaches in parameterizing sediment rating curve in ungauged catchments for subsequent instantaneous sediment yield prediction
Journal of Hydrology, 2014
[42] Modeling of Sediment Yield Prediction Using M5 Model Tree Algorithm and Wavelet Regression
Water Resources Management, 2014
[43] Review of three data-driven modelling techniques for hydrological modelling and forecasting
Fresenius Environmental Bulletin, 2014
[44] Investigation on Applicability of Data-Driven Models in Ungauged Catchments: Sediment Yield Prediction
S Heng, T Suetsugi - manuscript.sciknow.org, 2013
[45] Coupling Singular Spectrum Analysis with Artificial Neural Network to Improve Accuracy of Sediment Load Prediction
Journal of Water Resource and Protection, 2013
[46] Applications of Soft Computing in Civil Engineering: A Review
International Journal of Computer Applications, 2013
[47] Regionalization of sediment rating curve for sediment yield prediction in ungauged catchments
2013
[48] بررسی کارایی روش‌های برآورد بار رسوب معلق رودخانه قره‌چای‎
[49] شبیه‌سازی بار رسوب معلق با استفاده از روش‌های شبکه عصبی مصنوعی، عصبی-فازی و منحنی سنجه رسوب در حوزه آبخیز هلیل‌رود‎