Applied Mathematics

Applied Mathematics

ISSN Print: 2152-7385
ISSN Online: 2152-7393
www.scirp.org/journal/am
E-mail: am@scirp.org
"Solidification and Structuresation of Instability Zones"
written by Evgeniy Alexseevich Lukashov, Evgeniy Vladimirovich Radkevich,
published by Applied Mathematics, Vol.1 No.3, 2010
has been cited by the following article(s):
  • Google Scholar
  • CrossRef
[1] Rayleigh–Benard Instability: a Study by the Methods of Cahn–Hillard Theory of Nonequilibrium Phase Transitions
2020
[2] Dynamics of Structural Materials Destruction-The Initial Stage
2019
[3] Crystallization of Binary Alloys and Non-Equilibrium Phase Transitions
2019
[4] Исследование неустойчивости Рэлея–Бенара методами теории неравновесных фазовых переходов в форме Кана–Хилларда
2019
[5] Введение в обобщенную теорию неравновесных фазовых переходов и термодинамическийанализ задач механики сплошнойсреды
Thesis, 2019
[6] Solidification of Binary Alloys and Nonequilibrium Phase Transitions
2019
[7] About the damage to building materials and structures
IOP Conference Series: Materials Science and Engineering, 2018
[8] Investigation of the process of destruction of structural materials by the method of mathematical reconstruction in the form of a nonequilibrium phase transition
2018
[9] On laminar-turbulent transition
AIP Conference Proceedings, 2016
[10] On Nonviscous Solutions of a Multicomponent Euler System
Journal of Mathematical Sciences, 2016
[11] О реконструкции начальной стадии турбулентно-диффузионного горения
2016
[12] О распространении теории неравновесных фазовых переходов на ламинарно-турбулентный переход
2016
[13] On the Riemann–Hugoniot Catastrophe
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015
[14] On the Riemann's Problem for One Nonstrictly Hyperbolic System
Continuous and Distributed Systems II, 2015
[15] On the Riemann-Hugoniot catastrophe
Russian Journal of Mathematical Physics, 2015
[16] О парадигме внутренней турбулентности
Вестник Самарского государственного технического университета. Серия Физико-математические науки, 2015
[17] On the inner turbulence paradigm
2015
[18] О невязких решениях многокомпонентной системы Эйлера
Современная математика. Фундаментальные направления, 2014
[19] Nonclassical Regularization of the Multicomponent Euler System.
Journal of Mathematical Sciences, 2014
[20] We construct a nonstandard regularization of the multicomponent Euler system and ob-tain counterparts of the Hugoniot condition and the Lax stability condition …
2014
[21] NEVYaZKIE REShENIYa MNOGOKOMPONENTNOI SISTEMY EILERA
EV Radkevich - Doklady Akademii Nauk, 2014
[22] Inviscid solutions of the multicomponent Euler system
Doklady Mathematics, 2014
[23] Ê ÏÐÎÁËÅÌÅ ÂÈÇÓÀËÈÇÀÖÈÈ ÏÐÎÖÅÑÑÎÂ ÄÎ ËÎÊÀËÜÍÎÃÎ ÐÀÂÍÎÂÅÑÈß
ЕВ Радкевич - humus.ru, 2014
[24] On the possibility of the Cahn-Hilliard approach extension to the solution of gas dynamics problems (inner turbulence)
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'14), 2014
[25] We construct a nonstandard regularization of the multicomponent Euler system and ob-tain counterparts of the Hugoniot condition and the Lax stability condition. Bibliography: 13 titles. Illustrations: 2 figures.
Journal of Mathematical Sciences, 2014
[26] We construct a nonstandard regularization of the multicomponent Euler system and ob-tain counterparts of the Hugoniot condition and the Lax stability condition …
2014
[27] Nonclassical regularization of the multicomponent Euler system
Journal of Mathematical Sciences, 2014
[28] On the nature of bifurcations of one-front solutions of the truncated Euler system
Journal of mathematical sciences, 2014
[29] НЕВЯЗКИЕ РЕШЕНИЯ МНОГОКОМПОНЕНТНОЙ СИСТЕМЫ ЭЙЛЕРА
2014
[30] Example of the smooth skew product in the plane with the one-dimensional ramified continuum as the global attractor
ESAIM: Proceedings, 2012
Free SCIRP Newsletters
Copyright © 2006-2021 Scientific Research Publishing Inc. All Rights Reserved.
Top