Substitution of Kasila Group Basalt with the Archean Man Gneiss in Asphalt and Hydraulic Concrete Mix Design (Sierra Leone)

HTML  XML Download Download as PDF (Size: 1421KB)  PP. 291-310  
DOI: 10.4236/ojce.2019.94021    573 Downloads   1,435 Views  

ABSTRACT

The study of the performances of the Archean of Man gneiss aggregates with the addition of filler to replace the basalt of Kasila group in the asphalt and concrete mix design of southern Sierra Leone is presented in this document. The goal is to compare the results of the asphalt and concrete mix design with gneiss and basalt aggregate. The applied methods and design used are 1) Volumetric design and Marshall method for the asphalt, 2) French Dreux-Gorisse Method for the concrete. We added 2% of gneissic filler and 2% portland cement type 42.5 R to the asphalt hot mix with the gneiss aggregates to follow the criteria variation. The Marshall, the diametric compression and the Duriez tests require us to perform four different types of mix design. The four mix designs meet the requirements but F2 and F4 give the best mechanical properties. F2 (gneiss + 2% filler) and F4 (basalt) have many similarities from which we can conclude their interchangeability. F2 gives 5255 of optimal bitumen content. In regards to hydraulic concrete, the results of the compressive strength test (cement content 350 kg CMI 42.5 R/m3) with the gneiss and basalt aggregates are respectively 40 MPa and 45 MPa at 28 days curing: these values are greater than 35 MPa required by the technical specifications. The use of the Super Fluid ® Thermoplast 120 admixture, to increase the concrete compressive strength, is justified by the requirement of a minimum of 80% Rc28 at 24 hours. For both types of concrete, we have at 24 hours, 34 and 35 MPa which are higher than the minimum of 32 MPa (in 24 h). These results meet the requirements of the technical specifications.

Share and Cite:

Sow, I. and Cisse, I. (2019) Substitution of Kasila Group Basalt with the Archean Man Gneiss in Asphalt and Hydraulic Concrete Mix Design (Sierra Leone). Open Journal of Civil Engineering, 9, 291-310. doi: 10.4236/ojce.2019.94021.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.