Share This Article:

New Results in Perceptually Lossless Compression of Hyperspectral Images

Full-Text HTML XML Download Download as PDF (Size:11057KB) PP. 96-124
DOI: 10.4236/jsip.2019.103007    150 Downloads   298 Views


Hyperspectral images (HSI) have hundreds of bands, which impose heavy burden on data storage and transmission bandwidth. Quite a few compression techniques have been explored for HSI in the past decades. One high performing technique is the combination of principal component analysis (PCA) and JPEG-2000 (J2K). However, since there are several new compression codecs developed after J2K in the past 15 years, it is worthwhile to revisit this research area and investigate if there are better techniques for HSI compression. In this paper, we present some new results in HSI compression. We aim at perceptually lossless compression of HSI. Perceptually lossless means that the decompressed HSI data cube has a performance metric near 40 dBs in terms of peak-signal-to-noise ratio (PSNR) or human visual system (HVS) based metrics. The key idea is to compare several combinations of PCA and video/ image codecs. Three representative HSI data cubes were used in our studies. Four video/image codecs, including J2K, X264, X265, and Daala, have been investigated and four performance metrics were used in our comparative studies. Moreover, some alternative techniques such as video, split band, and PCA only approaches were also compared. It was observed that the combination of PCA and X264 yielded the best performance in terms of compression performance and computational complexity. In some cases, the PCA + X264 combination achieved more than 3 dBs than the PCA + J2K combination.

Cite this paper

Kwan, C. and Larkin, J. (2019) New Results in Perceptually Lossless Compression of Hyperspectral Images. Journal of Signal and Information Processing, 10, 96-124. doi: 10.4236/jsip.2019.103007.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.