Share This Article:

Artificial Intelligence: A Technological Prototype in Recruitment

Full-Text HTML XML Download Download as PDF (Size:350KB) PP. 382-390
DOI: 10.4236/jssm.2019.123026    474 Downloads   1,295 Views

ABSTRACT

Purpose: The study is conducted to evaluate the adaptability of artificial intelligence in recruitment and to assess the effect of this technology on the performance of the employees. Design/Methodology/Approach: Standard Multiple Linear regression model is used to predict the performance of the employees and one-way ANOVA is used to compare the artificial intelligence based recruitment with performance indicating variables namely reliability, productivity, Automation, Gamification & Training using SPSS. Snowball sampling method has been adopted for a sample size of 440 respondents working in leading recruitment consultancies in urban Bangalore. Findings: There is a greater association between the recruitment and performance variables when artificial intelligence is adopted as it is significant at 0.001 per cent level and productivity being the maximum. However, the impact of implementing gamification for recruitment doesn’t have a significant impact on the output due to partial significant effect on the adoption as (p = 0.046 < 0.05). Value of “R” is 0.604 and the coefficient of determination is 0.365. Productivity, Training, Automation & Reliability are the significant predictors of the performance in employees. Originality/Value: Artificial intelligence has emerged as a boon to the recruiters by automating the repetitive tasks, administrative tasks. Intelligent screening helps in automating resume screening, recruiter Chatbots for real-time candidate engagement, and digitization of interviews. This promotes pro-active strategic decision making better by the recruiters.

Cite this paper

Vedapradha, R. , Hariharan, R. and Shivakami, R. (2019) Artificial Intelligence: A Technological Prototype in Recruitment. Journal of Service Science and Management, 12, 382-390. doi: 10.4236/jssm.2019.123026.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.