Review: Low Cost, Environmentally Friendly Humic Acid Coated Magnetite Nanoparticles (HA-MNP) and Its Application for the Remediation of Phosphate from Aqueous Media

HTML  XML Download Download as PDF (Size: 1839KB)  PP. 256-279  
DOI: 10.4236/jeas.2018.84013    852 Downloads   2,228 Views  Citations

ABSTRACT

Phosphate is a primary nutrient required for the normal functioning of many organisms in the ecosystem. However, presence of excess phosphate into the aquatic systems leads to eutrophication which can promote harmful algal growth and decrease the amount of dissolved oxygen in water. Municipal, industrial and agricultural run-off wastewaters are the major point sources for phosphate discharges. There are different methods to remove phosphates from water. Among these, adsorption is the most widely accepted method for phosphate removal because of its high efficiency, minimum cost, easy and simple operation and applicability at lower concentrations. The emphasis of this review, is to consolidate low cost, environmentally friendly humic acid coated magnetite nanoparticles (HA-MNP) and its application for the remediation of phosphate from aqueous media. The magnetic nanoparticles could be easily separated from the reaction mixture by using a simple hand held magnet and adsorption studies demonstrate the fast and effective separation of phosphate with maximum removal efficiency > 90% at pH 6.6. The adsorption behavior follows the Freundlich isotherm and the removal of phosphate is found higher at acidic and neutral pH compared to basic conditions. The nanoparticles exhibit good selectivity and adsorption efficiency for phosphate in the presence of co-existing ions such as Cl-,  and  with some inhibition effect by  and finally, the effect of temperature on the adsorption reveals that the process is endothermic and spontaneous.

Share and Cite:

Damena, T. and Alansi, T. (2018) Review: Low Cost, Environmentally Friendly Humic Acid Coated Magnetite Nanoparticles (HA-MNP) and Its Application for the Remediation of Phosphate from Aqueous Media. Journal of Encapsulation and Adsorption Sciences, 8, 256-279. doi: 10.4236/jeas.2018.84013.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.