Average Power Function of Noise and Its Applications in Seasonal Time Series Modeling and Forecasting

HTML  Download Download as PDF (Size: 555KB)  PP. 293-304  
DOI: 10.4236/ajor.2011.14034    6,531 Downloads   10,103 Views  Citations
Author(s)

Affiliation(s)

.

ABSTRACT

This paper presents a new method of detecting multi-periodicities in a seasonal time series. Conventional methods such as the average power spectrum or the autocorrelation function plot have been used in detecting multiple periodicities. However, there are numerous cases where those methods either fail, or lead to incorrectly detected periods. This, in turn in applications, produces improper models and results in larger forecasting errors. There is a strong need for a new approach to detecting multi-periodicities. This paper tends to fill this gap by proposing a new method which relies on a mathematical instrument, called the Average Power Function of Noise (APFN) of a time series. APFN has a prominent property that it has a strict local minimum at each period of the time series. This characteristic helps one in detecting periods in time series. Unlike the power spectrum method where it is assumed that the time series is composed of sinusoidal functions of different frequencies, in APFN it is assumed that the time series is periodic, the unique and a much weaker assumption. Therefore, this new instrument is expected to be more powerful in multi-periodicity detection than both the autocorrelation function plot and the average power spectrum. Properties of APFN and applications of the new method in periodicity detection and in forecasting are presented.

Share and Cite:

Q. Song, "Average Power Function of Noise and Its Applications in Seasonal Time Series Modeling and Forecasting," American Journal of Operations Research, Vol. 1 No. 4, 2011, pp. 293-304. doi: 10.4236/ajor.2011.14034.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.