Share This Article:

Absolute Reference Values of the Real Gas

Full-Text HTML XML Download Download as PDF (Size:528KB) PP. 270-290
DOI: 10.4236/eng.2018.105019    286 Downloads   490 Views
Author(s)

ABSTRACT

With his publication in 1873 [1] J. W. Gibbs formulated the thermodynamic theory. It describes almost all macroscopically observed properties of matter and could also describe all phenomena if only the free energy U - ST were explicitly known numerically. The thermodynamic uniqueness of the free energy obviously depends on that of the internal energy U and the entropy S, which in both cases Gibbs had been unable to specify. This uncertainty, lasting more than 100 years, was not eliminated either by Nernst’s hypothesis S = 0 at T = 0. This was not achieved till the advent of additional proof of the thermodynamic relation U = 0 at T = Tc. It is noteworthy that from purely thermodynamic consideration of intensive and extensive quantities it is possible to derive both Gibbs’s formulations of entropy and internal energy and their now established absolute reference values. Further proofs of the vanishing value of the internal energy at the critical point emanate from the fact that in the case of the saturated fluid both the internal energy and its phase-specific components can be represented as functions of the evaporation energy. Combining the differential expressions in Gibbs’s equation for the internal energy, d(μ/T)/d(1/T) and d(p/T)/d(1/T), to a new variable d(μ/T)/d(p/T) leads to a volume equation with the lower limit vc as boundary condition. By means of a variable transformation one obtains a functional equation for the sum of two dimensionless variables, each of them being related to an identical form of local interaction forces between fluid particles, but the different particle densities in the vapor and liquid spaces produce different interaction effects. The same functional equation also appears in another context relating to the internal energy. The solution of this equation can be given in analytic form and has been published [2] [3]. Using the solutions emerging in different sets of problems, one can calculate absolutely the internal energy as a function of temperature-dependent, phase-specific volumes and vapor pressure.

Cite this paper

Elsner, A. (2018) Absolute Reference Values of the Real Gas. Engineering, 10, 270-290. doi: 10.4236/eng.2018.105019.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.