Copper and Cyanide Recovery in Cyanidation Effluents

HTML  Download Download as PDF (Size: 434KB)  PP. 191-197  
DOI: 10.4236/aces.2011.14028    9,226 Downloads   15,980 Views  Citations

Affiliation(s)

.

ABSTRACT

Cyanidation is the main process for gold and silver recovery from its ores. In this study, a process is proposed to recover copper and cyanide from barren solutions from the Merrill-Crowe cementation process with zinc dust. This technology is based on inducing nucleated precipitation of copper and silver in a serpentine reactor, using sodium sulfide as the precipitator, and sulfuric acid for pH control. Results show that pH value has a significant effect on copper cyanide removal efficiency, and it was determined the optimal pH range to be 2.5 - 3. At this pH value, the copper cyanide removal efficiency achieved was up to 97 and 99%, when copper concentration in the influent was 636 and 900 ppm. respectively. In this process (sulphidization-acidification-thickening-HCN recycling), the cyanide associated with copper cyanide complexes, is released as HCN gas under weakly acidic conditions, allowing it to be recycled back to the cyanidation process as free cyanide. Cyanide recovery was 90%. Finally, this procedure was successfully run at Minera William in México.

Share and Cite:

J. Parga, J. Valenzuela, H. Moreno and J. Pérez, "Copper and Cyanide Recovery in Cyanidation Effluents," Advances in Chemical Engineering and Science, Vol. 1 No. 4, 2011, pp. 191-197. doi: 10.4236/aces.2011.14028.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.