Design of a Three-Dimensional Centrifugal Fan with Controlled Blade Loading Approach

HTML  XML Download Download as PDF (Size: 4291KB)  PP. 410-425  
DOI: 10.4236/ojfd.2017.73028    2,799 Downloads   8,942 Views  Citations

ABSTRACT

The high flow-rate centrifugal fan needs a three-dimensional impeller to achieve a high efficiency. In this paper, the design procedure of a high-efficiency three-dimensional centrifugal fan is presented. First, the main dimensions of the fan were calculated by using the conventional one-dimensional method. Then, the blade loading or the angular momentum distribution along the meridional streamline on the blade surfaces is prescribed. After that, the three-dimensional blade is determined by using the streamline curvature method. With the aid of numerical simulations, the performance of the three-dimensional fan was improved and some of the key influence factors were investigated. The analyses indicate that, as to the high flow-rate centrifugal fan, the Stanitz modified formula is recommended to calculate the separation radius, rb. A proper increase in the separation radius is beneficial for the fan’s performance. It is also indicated that a decrease in the angular momentum on the hub leads to an increase in total pressure efficiency, under the condition of a given constant mean angular momentum at the outlet of the blade. In addition, the installation of a fairing on the hub plate can improve the fan’s efficiency evidently when the streamline curvature method is adopted to design the three-dimensional impeller.

Share and Cite:

Xiong, J. , Ai, X. , Wang, K. and Li, J. (2017) Design of a Three-Dimensional Centrifugal Fan with Controlled Blade Loading Approach. Open Journal of Fluid Dynamics, 7, 410-425. doi: 10.4236/ojfd.2017.73028.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.