Numerical Simulation of the Thin Film Coating Flow in Two-Dimension

HTML  XML Download Download as PDF (Size: 6360KB)  PP. 330-339  
DOI: 10.4236/ojfd.2017.73021    922 Downloads   1,906 Views  Citations
Author(s)

ABSTRACT

Thin film coating is a process of making liquid film cover and deposit base body surface by the way of dipping, spraying, sliding or spin coating, which is a kind of modern surface engineering. It plays an important role in the actual processing, such as improving the surface properties, fine processing, and new surface properties. Analysis of the influence of substrating morphology and fluid flow properties itself on coating fluid motion has an important significance to optimize the thin film coating and improve the quality of the final film. The influence from uneven substrate surface’s geometry configuration on internal motion of the flow field in slip-coating is analyzed by using the FLUENT software as a calculation platform. A two-dimension model of slip coating under isosceles triangle and isosceles trapezoid substrate was established, and thin film coating fluid motions under different configuration parameters were simulated. It is pointed out that the key factor determining the turbulence generation and evolution is the parameter of substrating surface nature. The effects of the change of Reynolds number on turbulent appearance and action area are studied. The velocity contours of fluid field on different substrate surfaces are shown, and the impact of substrate geometry on the backwater region is analyzed.

Share and Cite:

Liang, Z. and Zhou, H. (2017) Numerical Simulation of the Thin Film Coating Flow in Two-Dimension. Open Journal of Fluid Dynamics, 7, 330-339. doi: 10.4236/ojfd.2017.73021.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.