Scheduling Strategies and Throughput Optimization for the Uplink for IEEE 802.11ax and IEEE 802.11ac Based Networks

HTML  XML Download Download as PDF (Size: 1329KB)  PP. 250-273  
DOI: 10.4236/wsn.2017.98014    1,662 Downloads   4,737 Views  Citations
Author(s)

ABSTRACT

The new IEEE 802.11 standard, IEEE 802.11ax, has the challenging goal of serving more Uplink (UL) traffic and users as compared with his predecessor IEEE 802.11ac, enabling consistent and reliable streams of data (average throughput) per station. In this paper we explore several new IEEE 802.11ax UL scheduling mechanisms and compare between the maximum throughputs of unidirectional UDP Multi Users (MU) triadic. The evaluation is conducted based on Multiple-Input-Multiple-Output (MIMO) and Orthogonal Frequency Division Multiple Access (OFDMA) transmission multiplexing format in IEEE 802.11ax vs. the CSMA/CA MAC in IEEE 802.11ac in the Single User (SU) and MU modes for 1, 4, 8, 16, 32 and 64 stations scenario in reliable and unreliable channels. The comparison is conducted as a function of the Modulation and Coding Schemes (MCS) in use. In IEEE 802.11ax we consider two new flavors of acknowledgment operation settings, where the maximum acknowledgment windows are 64 or 256 respectively. In SU scenario the throughputs of IEEE 802.11ax are larger than those of IEEE 802.11ac by 64% and 85% in reliable and unreliable channels respectively. In MU-MIMO scenario the throughputs of IEEE 802.11ax are larger than those of IEEE 802.11ac by 263% and 270% in reliable and unreliable channels respectively. Also, as the number of stations increases, the advantage of IEEE 802.11ax in terms of the access delay also increases.

Share and Cite:

Sharon, O. and Alpert, Y. (2017) Scheduling Strategies and Throughput Optimization for the Uplink for IEEE 802.11ax and IEEE 802.11ac Based Networks. Wireless Sensor Network, 9, 250-273. doi: 10.4236/wsn.2017.98014.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.