On the Quantum Entanglement Reinterpretation Using the Time as Real Instantaneous Signal Field

HTML  XML Download Download as PDF (Size: 1149KB)  PP. 853-891  
DOI: 10.4236/jmp.2017.86054    1,679 Downloads   2,628 Views  

ABSTRACT

In relativistic mechanics the time-like vector characterize the motion in spacetime with speed faster than the speed of light in vacuum c in which the line element ds2=c2dt2-dx2-dx2-dz2 is less than zero (where is infinitesimal change in time, and are infinitesimal change in space), thus the time in relativistic mechanics can instantaneously flow [1], however in quantum mechanics although the time is treated as unobservable parameter (without any Hermitian observable operator have engine-value equivalent to time) any two physical quantity described by two non-commuting observable operatorsand fulfill , the knowledge of one immediately produce the knowledge of the other [2], thus in quantum mechanics if two particles interacted in finite temporal epoch and then separated in space the gaining of knowledge by the local measurement of physical quantity runs on one them (for example the measurement of spin direction of one particle using Stern-Gerlach experiment) immediately produce the knowledge of the complementary physical quantity of the other particle (for example the opposite spin direction of the other particle), this simply called quantum entanglement the concept that so much advanced after publication of the Jon Bell’s 1964 celebrated paper [3] in which he illustrated that we can add parameters to quantum mechanics to determine the results of individual measurements, without changing the statistical predictions, and then he conclude “there must be a mechanism whereby the setting of one measuring device can influence the reading of another instrument, however remote. Moreover, the signal involved must propagate instantaneously so that such a theory could not be Lorentz invariant”. The question now what these signals that can propagate instantaneously? The answer in this paper will be the time signals field which is defined for each constituent matter particle M and at each space point P as the measure of the total length of all occupation and leaving epochs of P by M which is representing a sequence function compactly supported only at the space point occupied by it and indexed by the number of occupation epochs of P by M, thus the flow of this time signal field from the far future to near future through the present to the near past to the far past inferable by the flow of matter particles constituting the system(such as sun, moon earth and clocks hands). Thus the present will represent in this paper a local absolute feature of time signals field defined at each space point as the set of all occupation epochs of it by matter particle, however the past and future will represent relativistic non-local features of the time signal field defined at each space point as a set of all leaving epochs between each two sequential occupation epochs, so the future after one occupation epoch is representing a past of the next one. Thus according to current representation of time, the two Mc-Taggard’s A and B series of time [4] will exist together as temporal set and then the time is real, the A-series in current theory is a set of all occupation and leaving epochs of space point by the matter particle that is consisting of the present, past and future epochs, and the B-series is the set of all leaving epochs of space points between each two sequential occupation epochs which are taking position before or after the discrete occupation epochs between them and then before or after each other.

Share and Cite:

Naseraddeen, E. (2017) On the Quantum Entanglement Reinterpretation Using the Time as Real Instantaneous Signal Field. Journal of Modern Physics, 8, 853-891. doi: 10.4236/jmp.2017.86054.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.