Superheterodyne Amplification for Increase the Working Frequency

HTML  XML Download Download as PDF (Size: 1227KB)  PP. 43-52  
DOI: 10.4236/jemaa.2017.93005    1,345 Downloads   1,919 Views  

ABSTRACT

The amplification of microwaves in n-GaAs films has been widely studied. On the other hand, using nonlinear parametric effects in microwave, millimeter, and THz ranges has a large potential. In this paper the resonant nonlinear phenomena are investigated in active n-GaAs semiconductor and in films on its base. The phenomena are the nonlinear interactions of space charge waves, including the frequency multiplication and mixing, and the three-wave interaction between two THz electromagnetic waves and a single space charge wave. This three-wave interaction results in the superheterodyne amplification of THz waves. The electron velocity in GaAs is the nonlinear function of an external electric field. If the bias electric field is more E0>Ecrit 3KV/cm , it is possible to obtain a negative differential mobility (NDM and space charge waves). The space charge waves have phase velocity of electrons equal to v0=v(E0), E0=V0/Lz , where V0 is the voltage, producing the bias electric field Ein GaAs film. The superheterodyne amplification and the multiplication of microwaves are very promising for building active sensors in telecommunications system, radiometers, and radio telescopes. The superheterodyne mechanism has an advantage related to decreasing noise because of increasing of frequency in the process of amplification. It is used in the process of amplification of longitudinal space charge waves that in turn causes the transfer of energy from longitudinal wave into transverse one with increasing frequency. This is realized due to parametric coupling of two transverse waves and a single space charge wave in GaAs.

Share and Cite:

Koshevaya, S. , Grimalsky, V. , Kotsarenko, Y. , Tecpoyotl, M. and Escobedo, J. (2017) Superheterodyne Amplification for Increase the Working Frequency. Journal of Electromagnetic Analysis and Applications, 9, 43-52. doi: 10.4236/jemaa.2017.93005.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.