Urban Heat Island Mitigation and Urban Planning: The Case of the Mexicali, B. C. Mexico

HTML  XML Download Download as PDF (Size: 2911KB)  PP. 22-39  
DOI: 10.4236/ajcc.2017.61002    2,755 Downloads   6,787 Views  Citations

ABSTRACT

The derivations of climate change on cities and their activities depend on their capacity for adaptation and mitigation. In this sense, it has long recognized the influence of cities on their own climate, which is typically warmer than the surrounding. This phenomenon called urban heat island (UHI) has a number of impacts on air quality, water demand and energy. Since the fourth IPCC assessment report indicates the need for urban centers devoting efforts to adaptation to reduce the risks of direct and indirect impacts of climate change. The same organization recognizes the urban planning as a tool to seek such order. However, it also recognizes that the current scale of climate models cannot provide a representation of urban areas. This paper explores the intensification of the UHI, its relationship with urban expansion and its impact on housing in the city of Mexicali, B.C. Its aim is to determine its impact and mitigation potential through analysis and modeling of urban structure, expressed in use and land cover, as well as the implementation of mitigation strategies. The results show on the one hand, the convenience of using dynamic modeling as a tool applied to urban planning with a focus on mitigation and adaptation to climate change. Furthermore, regarding the implementation of strategies, the results show that most efficiency is obtained when applied generally, this is, considering green and cool roofs, cool pavements and afforestation as part of urbanization process, otherwise, only partial results are achieved. Overall, housing land use has significant potential to mitigate the UHI in the city.

Share and Cite:

Villanueva-Solis, J. (2017) Urban Heat Island Mitigation and Urban Planning: The Case of the Mexicali, B. C. Mexico. American Journal of Climate Change, 6, 22-39. doi: 10.4236/ajcc.2017.61002.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.