Share This Article:

Disease Prevention and Alleviation by Human Myoblast Transplantation

Full-Text HTML XML Download Download as PDF (Size:762KB) PP. 25-43
DOI: 10.4236/ojrm.2016.52003    3,874 Downloads   4,711 Views Citations
Author(s)

ABSTRACT

Myoblast implantation is a unique, patented technology of muscle regeneration being tested in Phase III clinical trials of muscular dystrophy, ischemic cardiomyopathy, Phase II trial of cancer, and Phase I trial of Type II diabetes. Differentiated and committed, myoblasts are not stem cells. Implanted myoblasts fuse spontaneously among themselves, replenishing genetically normal myofibers. They also fuse with genetically abnormal myofibers of muscular dystrophy, cardiomyopathy, or Type II diabetes, transferring their nuclei containing the normal human genome to provide stable, long-term expression of the missing gene products. They develop to become cardiomyocytes in the infracted myocardium. Myoblasts transduced with VEGF165 allow concomitant regeneration of blood capillaries and myofibers. They are potent biologics for treating heart failure, ischemic cardiomyopathy, diabetic ischemia, erectile dysfunction, and baldness. Myoblasts, because of their small size, spindle shape, and resilience, can grow within wrinkles and on skin surfaces, thus enhancing the color, luster and texture of the skin “plated” with them. They can be injected subcutaneously as a cellular filler to reduce wrinkles. Intramuscular injection of myoblasts can augment the size, shape, consistency, tone and strength of muscle groups, improving the lines, contours and vitality to sculpt a youthful appearance. This highly promising technology has great social economic values in treating hereditary, fatal and debilitating disease conditions.

Cite this paper

Law, P. (2016) Disease Prevention and Alleviation by Human Myoblast Transplantation. Open Journal of Regenerative Medicine, 5, 25-43. doi: 10.4236/ojrm.2016.52003.

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.