Automated Dynamic Cellular Analysis in Time-Lapse Microscopy

HTML  Download Download as PDF (Size: 1207KB)  PP. 44-50  
DOI: 10.4236/jbm.2016.43008    2,133 Downloads   2,868 Views  

ABSTRACT

Analysis of cellular behavior is significant for studying cell cycle and detecting anti-cancer drugs. It is a very difficult task for image processing to isolate individual cells in confocal microscopic images of non-stained live cell cultures. Because these images do not have adequate textural variations. Manual cell segmentation requires massive labor and is a time consuming process. This paper describes an automated cell segmentation method for localizing the cells of Chinese hamster ovary cell culture. Several kinds of high-dimensional feature descriptors, K-means clustering method and Chan-Vese model-based level set are used to extract the cellular regions. The region extracted are used to classify phases in cell cycle. The segmentation results were experimentally assessed. As a result, the proposed method proved to be significant for cell isolation. In the evaluation experiments, we constructed a database of Chinese Hamster Ovary Cell’s microscopic images which includes various photographing environments under the guidance of a biologist.

Share and Cite:

Aotake, S. , Atupelage, C. , Zhang, Z. , Aoki, K. , Nagahashi, H. and Kiga, D. (2016) Automated Dynamic Cellular Analysis in Time-Lapse Microscopy. Journal of Biosciences and Medicines, 4, 44-50. doi: 10.4236/jbm.2016.43008.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.