Deterioration in Hemodynamics Reaction, Baroreflex Sensitivity, Sympathetic Nerve Activity and Redox State of Thoracic Aorta in the Experimental Model of Nitrate Tolerance and Its Pharmacological Correction

HTML  XML Download Download as PDF (Size: 335KB)  PP. 81-88  
DOI: 10.4236/pp.2016.71011    4,249 Downloads   5,046 Views  Citations

ABSTRACT

Continuous treatment with organic nitrates causes nitrate tolerance and provides evidence for a relationship between mitochondrial complex 1 activity and mitochondrial aldehyde dehydrogenase-2 (ALDH-2) with disturbances of the hemodynamics reaction during nitroglycerin (NTG) tolerance (NTGT). The purpose of this study was the evaluation of efficacy of original oxidized form NAD-containing drug, NADCIN®, on hemodynamic reactions, baroreflex sensitivity (BRS) and reflex control of splanchnic sympathetic nerve activity (SSNA), level of redox-potential, activity of ALDH-2 and superoxide anion generation in aortic tissue in rat model of NTGT. Five groups (7 - 9 each) of male Wistar rats, including control, acute i.v. NTG (150 mcg/kg) administration, NTG tolerance NTGT treatment with NADCIN® 8 mg/kg and methylene blue (MB, 2.5 mg/kg) were used. NTGT in rats was accompanied with the greatly attenuation of hemodynamics reaction, BRS, the decreasing of the ability to reflex control of SSNA without pronounce overexpression of endothelin-1 in vessels (aorta). In NTGT rats i.v. NTG along induced less hypotensive reactions and alterations in heart period vs single NTG treated group, more expressively decreased BRS (-34%) and reflex control of SSNA (-18%). NADCIN® significantly inhibits tolerance-inducing properties of the prolonged nitroglycerin infusion (max decrease of blood pressure response to nitroglycerin injection, % of normal controls: NTGT 51.2%, NADCIN® 91.6%, MB 55.8%). NADCIN® in NTGT rats after NTG i.v. administration increased reduced BRS (+37.8%, p < 0,05), reflex control of SSNA (+29.4%, p < 0.05) and reversed the decreasing of NAD/NADH ratio, ALDH-2 activity and decreasing in superoxide generation in thoracic aortic tissue. Thus, course treatment with NADCIN® of NTGT rats restores hemodynamics changes, BRS and SSNA throughout the increasing of redox-potential NAD/NADH and cessates the NTGT developing.

Share and Cite:

Gongadze, N. , Kezeli, T. , Sukoyan, G. , Chapichadze, Z. , Dolidze, N. , Mirziashvili, M. and Chipashvili, M. (2016) Deterioration in Hemodynamics Reaction, Baroreflex Sensitivity, Sympathetic Nerve Activity and Redox State of Thoracic Aorta in the Experimental Model of Nitrate Tolerance and Its Pharmacological Correction. Pharmacology & Pharmacy, 7, 81-88. doi: 10.4236/pp.2016.71011.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.