The Adenosine Receptor Agonist 5’-N-Ethylcarboxamide-Adenosine Increases Mouse Serum Total Homocysteine Levels, Which Is a Risk Factor for Cardiovascular Diseases

HTML  XML Download Download as PDF (Size: 3176KB)  PP. 461-470  
DOI: 10.4236/pp.2015.610048    2,909 Downloads   3,712 Views  

ABSTRACT

An increase in total homocysteine (Hcy) levels (protein-bound and free Hcy in the serum) has been identified as a risk factor for vascular diseases. Hcy is a product of the methionine cycle and is a precursor of glutathione in the transsulfuration pathway. The methionine cycle mainly occurs in the liver, with Hcy being exported out of the liver and subsequently bound to serum proteins. When the non-specific adenosine receptor agonist 5’-N-ethylcarboxamide-adenosine (NECA; 0.1 or 0.3 mg/kg body weight) was intraperitoneally administered to mice that had been fasted for 16 h, total Hcy levels in the serum significantly increased 1 h after its administration. The NECA treatment may have inhibited transsulfuration because glutathione levels were significantly decreased in the liver. After the intraperitoneal administration of a high dose of NECA (0.3 mg/kg body weight), elevations in total Hcy levels in the serum continued for up to 10 h. The mRNA expression of methionine metabolic enzymes in the liver was significantly reduced 6 h after the administration of NECA. NECA-induced elevations in total serum Hcy levels may be maintained in the long term through the attenuated expression of methionine metabolic enzymes.

Share and Cite:

Sakata, S. , Matsuda, K. , Horikawa, Y. and Sasaki, Y. (2015) The Adenosine Receptor Agonist 5’-N-Ethylcarboxamide-Adenosine Increases Mouse Serum Total Homocysteine Levels, Which Is a Risk Factor for Cardiovascular Diseases. Pharmacology & Pharmacy, 6, 461-470. doi: 10.4236/pp.2015.610048.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.