Disruption of Mycobacterium smegmatis Biofilms Using Bacteriophages Alone or in Combination with Mechanical Stress

HTML  XML Download Download as PDF (Size: 1425KB)  PP. 699-710  
DOI: 10.4236/aim.2015.510073    3,604 Downloads   5,027 Views  Citations

ABSTRACT

Environmental mycobacteria are capable of forming biofilms in low-nutrient environments, and these biofilms may act as reservoirs for opportunistic infections. The purpose of this study was to determine if bacteriophages could disrupt existing biofilms of acid-fast staining Mycobacterium smegmatis. Using the MBEC 96-well plastic peg assay system, M. smegmatis biofilms were created and then tested for their stability in the presence of mycobacteriophages isolated from a Minnesota sphagnum peat bog. All phages tested were lytic and were observed to have weak, intermediate, and strong abilities to disrupt M. smegmatis biofilms. The formation of biofilms was severely impaired in the presence of mycobacteriophages. Phage treatment was also shown to augment M. smegmatis biofilm disruption by mechanical forces of sonication or water flow. Our study shows that, as with biofilms of Gram-positive and Gram-negative bacteria, mycobacterial biofilms are also susceptible to destruction by bacteriophages.

Share and Cite:

Kiefer, B. and Dahl, J. (2015) Disruption of Mycobacterium smegmatis Biofilms Using Bacteriophages Alone or in Combination with Mechanical Stress. Advances in Microbiology, 5, 699-710. doi: 10.4236/aim.2015.510073.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.